Healthcare professionals routinely use audio signals, generated by the human body, to help diagnose disease or assess its progression. With new technologies, it is now possible to collect human-generated sounds, such as coughing. Audio-based machine learning technologies can be adopted for automatic analysis of collected data. Valuable and rich information can be obtained from the cough signal and extracting effective characteristics from a finite duration time interval that changes as a function of time. This article presents a proposed approach to the detection and diagnosis of COVID-19 through the processing of cough collected from patients suffering from the most common symptoms of this pandemic. The proposed method is based on adopting a combination of Singular Value Decomposition (SVD), and Discrete Wavelet Transform (DWT). The combination of these two signal processing techniques is gaining lots of interest in the field of speaker and speech recognition. As a cough recognition approach, we found it well-performing, as it generates and utilizes an efficient minimum number of features. Mean and median frequencies, which are known to be the most useful features in the frequency domain, are applied to generate an effective statistical measure to compare the results. The hybrid structure of DWT and SVD, adopted in this approach adds to its efficiency, where a 200 times reduction, in terms of the number of operations, is achieved. Despite the fact that symptoms of the infected and non-infected people used in the study are having lots of similarities, diagnosis results obtained from the application of the proposed approach show high diagnosis rate, which is proved through the matching with relevant PCR tests. The proposed approach is open for more improvements with its performance further assured by enlarging the dataset, while including healthy people.
Background: COVID-19 pandemic has influenced all life aspects; Dental staff, like other healthcare providers, may be exposed to COVID-19 as part of their work and its psychological impacts on healthcare workers should not be ignored
Objectives: To assess the anxiety, and fear from COVID-19 pandemic in dentists working in specialist dental centers: sample the Al-Resafa health directorate, and its relation between the anxiety, and COVID-19 fear with some of their demographic variables
Subjects and Methods: A cross-sectional study was conducted on 2nd Jan. to 14th Feb. 2021, by an electronic version of questionnaire through Google-form; the questionnaire was formed based on Mental-Health-American-Org
... Show MoreDatabase is characterized as an arrangement of data that is sorted out and disseminated in a way that allows the client to get to the data being put away in a simple and more helpful way. However, in the era of big-data the traditional methods of data analytics may not be able to manage and process the large amount of data. In order to develop an efficient way of handling big-data, this work studies the use of Map-Reduce technique to handle big-data distributed on the cloud. This approach was evaluated using Hadoop server and applied on EEG Big-data as a case study. The proposed approach showed clear enhancement for managing and processing the EEG Big-data with average of 50% reduction on response time. The obtained results provide EEG r
... Show MoreThe research problem is dedicated to investigate reservoirs irrational economic behavior adopted by the ruling elites in developing countries about the investment methodology of human capital and operating policies is based on the terms of reference of economic theory and standards governing the market, which led to a chronic structural imbalance in the workforce structure and lack of consistency with different production structure, in turn, which had a reported effects in the emergence of the phenomenon of unemployment and that they involved a certain privacy, as has become the issues of unemployment and employment in the various countries of the world are issues more important due to the presence of large numbers of the workforce in th
... Show MoreBackground: since December 2019, China and in particularly Wuhan, faced an unprecedented an outbreak challenge of coronavirus disease 2019, caused by the severe acute respiratory syndrome coronavirus 2. Clinical characteristics of Iraqi patients with COVID-19 and risk factors for mortality needed to be shared with the health care providers to improve the overall disease experience. Methods: prospective, single-center study recruited patients with confirmed SARS-CoV-2 infection who were admitted to Al-Shifaa Isolation Center / Baghdad Medical City between the mid of March and the end of April 2020 until had been discharged or had died. Demographic data, information on clinical signs, symptoms, at presentation, treatment, have been collected
... Show MoreHepatocellular carcinoma (HCC) is the third most common cause of cancer-related death. Therefore, it is critical for researchers to understand molecular biology in greater depth. In several diseases including cancer, abnormal miRNA expression has been linked to apoptosis, proliferation, differentiation, and metastasis. Many miRNAs have been studied in relation to cancer, including miR-122, miR-223, and others. Hepatitis B and C viruses are the most important global risk factors for HCC. This study is intended to test whether serum miRNAs serve as a potential biomarker for both HCC and viral infections HBV and C. The expression of miRNA in 64 serum samples was analyzed by RT-qPCR. Compared to healthy volunteers, HCC patients' sera expre
... Show MoreAbstract
This study aimed to identify the business risks using the approach of the client strategy analysis in order to improve the efficiency and effectiveness of the audit process. A study of business risks and their impact on the efficiency and effectiveness of the audit process has been performed to establish a cognitive framework of the main objective of this study, in which the descriptive analytical method has been adopted. A survey questionnaire has been developed and distributed to the targeted group of audit firms which have profession license from the Auditors Association in the Gaza Strip (63 offices). A hundred questionnaires have been distributed to the study sample of which, a total of 84 where answered and
... Show MoreThe Dirichlet process is an important fundamental object in nonparametric Bayesian modelling, applied to a wide range of problems in machine learning, statistics, and bioinformatics, among other fields. This flexible stochastic process models rich data structures with unknown or evolving number of clusters. It is a valuable tool for encoding the true complexity of real-world data in computer models. Our results show that the Dirichlet process improves, both in distribution density and in signal-to-noise ratio, with larger sample size; achieves slow decay rate to its base distribution; has improved convergence and stability; and thrives with a Gaussian base distribution, which is much better than the Gamma distribution. The performance depen
... Show MoreThe covid-19 global pandemic has influenced the day-to-day lives of people across the world. One consequence of this has been significant distortion to the subjective speed at which people feel like time is passing. To date, temporal distortions during covid-19 have mainly been studied in Europe. The current study therefore sought to explore experiences of the passage of time in Iraq. An online questionnaire was used to explore the passage of time during the day, week and the 11 months since the first period of covid-19 restrictions were imposed in Iraq. The questionnaire also measured affective and demographic factors, and task-load. The results showed that distortions to the passage of time were widespread in Iraq. Participants co
... Show More