A total global dominator coloring of a graph is a proper vertex coloring of with respect to which every vertex in dominates a color class, not containing and does not dominate another color class. The minimum number of colors required in such a coloring of is called the total global dominator chromatic number, denoted by . In this paper, the total global dominator chromatic number of trees and unicyclic graphs are explored.
In this paper, we introduce and study a new concept named couniform modules, which is a dual notion of uniform modules, where an R-module M is said to be couniform if every proper submodule N of M is either zero or there exists a proper submodule N1 of N such that is small submodule of Also many relationships are given between this class of modules and other related classes of modules. Finally, we consider the hereditary property between R-module M and R-module R in case M is couniform.