This study was conducted on Lake Hamrin situated in Diyala governorate, focal Iraq, between latitudes 44º 53ʹ 26.16 '- 45º 07 ʹ 28.03ʺ and 34º 04ʹ 24.75ʺ ــ 34º 19ʹ 12.74ʺ . As in this study, the surface area of Hamrin Lake was calculated from satellite images during the period from October 2019 to September 2020, with an average satellite image for each month, furthermore,by utilizing the Normalized Differences Water Index (NDWI), the largest surface area was 264,617 km2 for October and the lowest surface area 140.202 km2 for September. The surface temperature of the lake water was also calculated from satellite images of the Landsat 8 satellite, based on bands 10 (Thermal Infrared 1) and 11 (Thermal Infrared 2) that are sensitive to thermal radiation, as the highest surface temperature reached in June 45.49°C degrees Celsius due to the high temperatures for this month and the lowest in February 3.09°C degrees Celsius, which is one of the months in which temperatures drop to the lowest level. The utilization of remote sensing and GIS innovations has helped a lot in checking changes, whether in surface area or temperature, which saves effort, time and cost. The results of this study put decision makers in taking the necessary precautions for the seasons of water scarcity and drought to meet the community’s water needs in the areas of multiple human consumptions and at the same time take advantage of rainy seasons and water abundance to develop long-term strategic plans to maintain a sustainable water balance.
Physically based modeling approach has been widely developed in recent years for the simulation of dam failure process due to the lack of field data. This paper provides and describes a physically-based model depending on dimensional analysis and hydraulic simulation methods for estimating the maximum water level and the wave propagation time from breaching of field test dams. The field physical model has been constructed in Dabbah city to represent the collapse of the Roseires dam in Sudan. Five cases of a dam failure were studied to simulate water flood conditions by changing initial water height in the reservoir (0.8, 1.0, 1.2, 1.4 and 1.5 m respectively).The physical model working under five cases, case 5 had the greatest influence of t
... Show MoreThe presence of hydrocarbons in the soil is considered one of the main problems of pollution. In our current study, eight samples isolated from soil saturated with hydrocarbons were taken from different areas of Baghdad, Iraq. In this study, 5 isolates belonging to Pseudomonas aeruginosa by 99%, 4 isolates to Klebsiella pneumoniae by 98%, and 3 isolates to Enterobacter hormaechei by 97% were diagnosed in different ways. A molecular examination was also conducted by 16sRNA. We recorded P. aeruginosa, K. Pneumoniae and E. hormaechei as new local isolates in NCBI. In addition, a comparison was made between our isolates and the global isolates to determine the degree of convergence in the evolutionary line. The genes alkB and nahAc7 were diagno
... Show MoreIn this publication, several six coordinate bridged-polymeric metal complexes are reported. The reaction of 4,4`-dipyridine with ethyl chloroacetate in mole ratio of 1:2 gave the multidentate carboxylate ligand bis(N-carboxylatomethyl)-4,4`-dipyridinium). The reaction of the ligand with metal chloride and sodium azide resulted in the formation of the required polymeric complexes. Upon complex formation, the carboxylato ligand behaves as a neutral multidantate species. The mode of bonding and overall geometry of the complexes were determined through physicochemical and spectroscopic methods. These studies revealed octahedral geometry about metal centres and complexes of the general formula [Cr2(L)(N3)4]Cl2.H2O, Na2[Ag2(L)(N3)4].H2O and [M2(L
... Show MoreThe placement of buildings and structures on/or adjacent to slopes is possible, but this poses a danger to the structure due to failures that occur in slopes. Therefore, a solution or improvement should be determined for these issues of the collapse of the structure as a result of the failure of the slopes. A laboratory model has been built to test the impact of some variables on the bearing capacity factor. The variables include the magnitude of static axial load applied at the center of footing, the depth of embedment, the spacing between geogrid reinforcement layer and the numbering of the geogrid sheet under the footing, the inclination angle of slope clayey soil (β), the spacing between the footing's edge and the slope's end (b/H). Th
... Show MoreThis study compared the clinicopathological, immunohistochemical characteristics and Epstein-Barr virus (EBV) detection of Burkitt's lymphoma (BL) in the abdomen and jaw of Iraqi patients. A cohort/retrospective study was carried out between August and September 2024 using 25 tissue blocks (14 gnathic and 11 abdominal BL) from the Oral and Maxillofacial Laboratory, University of Baghdad, College of Dentistry, and the National Centre for Educational Laboratories. The sections were stained with haematoxylin and eosin (H&E), while CD10, CD20, Bcl-2, BCl-6, C-Myc and Ki-67 markers were used for diagnosis. The DNA detection of the EBV was performed by polymerase chain reaction (PCR). The tumours showed 22 classical and 3 atypical histologi
... Show MoreA two-dimensional computational study had been performed regarding aerodynamic forces and pressures affecting a cambered inverted airfoil, CLARK-Y smoothed with ground effects by solving the Reynolds-averaged Navier-Stokes equations, using the commercial software COMSOL Multiphysics 5.0 solver. Turbulence effects are modeled using the Menter shear-stress transport (SST) two-equation model. The negative lift (down-force), drag forces and pressures surface were predicted through the simulation of wings over inverted wings in different parameters namely; varying incidences i.e. angles of attack of the airfoils, varying the ride hide from the ground covering various force regions, two-dimensional cross-section of the inverted front wings to be
... Show More