The Wang-Ball polynomials operational matrices of the derivatives are used in this study to solve singular perturbed second-order differential equations (SPSODEs) with boundary conditions. Using the matrix of Wang-Ball polynomials, the main singular perturbation problem is converted into linear algebraic equation systems. The coefficients of the required approximate solution are obtained from the solution of this system. The residual correction approach was also used to improve an error, and the results were compared to other reported numerical methods. Several examples are used to illustrate both the reliability and usefulness of the Wang-Ball operational matrices. The Wang Ball approach has the ability to improve the outcomes by minimizing the degree of error between approximate and exact solutions. The Wang-Ball series has shown its usefulness in solving any real-life scenario model as first- or second-order differential equations (DEs).
Serial tendering is better than other types of tendering when it comes to cost reduction, where civil infrastructure projects need a significant increase in the amount of tough planning, financial expenditures, engineering work, and resources of a different character than other types of construction projects. The effects of a lack of funding cause decrease in the completion speed of the project on time. The need to reduce the cost of bidding on recurrent civil infrastructure projects is critical. To achieve the desired goals of this research, this article will provide an overview of the type of bids used in the construction of schools implemented in the current financial perspective i
In this paper, a new class of nonconvex sets and functions called strongly -convex sets and strongly -convex functions are introduced. This class is considered as a natural extension of strongly -convex sets and functions introduced in the literature. Some basic and differentiability properties related to strongly -convex functions are discussed. As an application to optimization problems, some optimality properties of constrained optimization problems are proved. In these optimization problems, either the objective function or the inequality constraints functions are strongly -convex.
This research aims to study the target costing and value chain with their complimentary relationship in reducing product costs, meeting the needs of customer, and achieving strategic competitive advantage for manufacturing corporations in response to face international competition, technological development and continuous changing expectations of customers. No doubt, the target costing and value chain both currently occupy a great deal of the attention of managers and accountants at the manufacturing corporations due to the significance to insure their continuity, growth and development. This significance has been the main motive to examine the role of target costing and value chain in a sample of public corporations of the
... Show MoreIn this paper, we will show that the Modified SP iteration can be used to approximate fixed point of contraction mappings under certain condition. Also, we show that this iteration method is faster than Mann, Ishikawa, Noor, SP, CR, Karahan iteration methods. Furthermore, by using the same condition, we shown that the Picard S- iteration method converges faster than Modified SP iteration and hence also faster than all Mann, Ishikawa, Noor, SP, CR, Karahan iteration methods. Finally, a data dependence result is proven for fixed point of contraction mappings with the help of the Modified SP iteration process.
The use of Near-Surface Mounted (NSM) Carbon-Fiber-Reinforced Polymer (CFRP) strips is an efficient technology for increasing flexural and shear strength or for repairing damaged Reinforced Concrete (RC) members. This strengthening method is a promising technology. However, the thin layer of concrete covering the NSM-CFRP strips is not adequate to resist heat effect when directly exposed to a fire or at a high temperature. There is clear evidence that the strength and stiffness of CFRPs severely deteriorate at high temperatures. Therefore, in terms of fire resistance, the NSM technique has a significant defect. Thus, it is very important to develop a set of efficient fire protection systems to overcome these disadvantages. This pape
... Show MoreThis paper deals with testing a numerical solution for the discrete classical optimal control problem governed by a linear hyperbolic boundary value problem with variable coefficients. When the discrete classical control is fixed, the proof of the existence and uniqueness theorem for the discrete solution of the discrete weak form is achieved. The existence theorem for the discrete classical optimal control and the necessary conditions for optimality of the problem are proved under suitable assumptions. The discrete classical optimal control problem (DCOCP) is solved by using the mixed Galerkin finite element method to find the solution of the discrete weak form (discrete state). Also, it is used to find the solution for the discrete adj
... Show MoreFor a long time, the intensification of profit represented a major goal for the company management ,but this goal confirmed a series of restrictions such the constriction on short period, the time rather than on long and medium strategic goal, the relationships with customers ,the supplies, employees , This goal is replaced by another one (intensification of the company's value) ,and the fortune of the share holders itself ,for the purpose of creating value, the company must generate great outcomes to cover the operating expense and to insure the a suitable compensation to the invested capital (the market value added) is the indication used to estimate the company ability to create value –added the development
... Show MoreAutism Spectrum Disorder, also known as ASD, is a neurodevelopmental disease that impairs speech, social interaction, and behavior. Machine learning is a field of artificial intelligence that focuses on creating algorithms that can learn patterns and make ASD classification based on input data. The results of using machine learning algorithms to categorize ASD have been inconsistent. More research is needed to improve the accuracy of the classification of ASD. To address this, deep learning such as 1D CNN has been proposed as an alternative for the classification of ASD detection. The proposed techniques are evaluated on publicly available three different ASD datasets (children, Adults, and adolescents). Results strongly suggest that 1D
... Show MoreIn this study, He's parallel numerical algorithm by neural network is applied to type of integration of fractional equations is Abel’s integral equations of the 1st and 2nd kinds. Using a Levenberge – Marquaradt training algorithm as a tool to train the network. To show the efficiency of the method, some type of Abel’s integral equations is solved as numerical examples. Numerical results show that the new method is very efficient problems with high accuracy.
Scheduling problems have been treated as single criterion problems until recently. Many of these problems are computationally hard to solve three as single criterion problems. However, there is a need to consider multiple criteria in a real life scheduling problem in general. In this paper, we study the problem of scheduling jobs on a single machine to minimize total tardiness subject to maximum earliness or tardiness for each job. And we give algorithm (ETST) to solve the first problem (p1) and algorithm (TEST) to solve the second problem (p2) to find an efficient solution.