The advancements in Information and Communication Technology (ICT), within the previous decades, has significantly changed people’s transmit or store their information over the Internet or networks. So, one of the main challenges is to keep these information safe against attacks. Many researchers and institutions realized the importance and benefits of cryptography in achieving the efficiency and effectiveness of various aspects of secure communication.This work adopts a novel technique for secure data cryptosystem based on chaos theory. The proposed algorithm generate 2-Dimensional key matrix having the same dimensions of the original image that includes random numbers obtained from the 1-Dimensional logistic chaotic map for given control parameters, which is then processed by converting the fractional parts of them through a function into a set of non-repeating numbers that leads to a vast number of unpredicted probabilities (the factorial of rows times columns). Double layers of rows and columns permutation are made to the values of numbers for a specified number of stages. Then, XOR is performed between the key matrix and the original image, which represent an active resolve for data encryption for any type of files (text, image, audio, video, … etc). The results proved that the proposed encryption technique is very promising when tested on more than 500 image samples according to security measurements where the histograms of cipher images are very flatten compared with that for original images, while the averages of Mean Square Error is very high (10115.4) and Peak Signal to Noise Ratio is very low (8.17), besides Correlation near zero and Entropy close to 8 (7.9975).
Abstract
The research Compared two methods for estimating fourparametersof the compound exponential Weibull - Poisson distribution which are the maximum likelihood method and the Downhill Simplex algorithm. Depending on two data cases, the first one assumed the original data (Non-polluting), while the second one assumeddata contamination. Simulation experimentswere conducted for different sample sizes and initial values of parameters and under different levels of contamination. Downhill Simplex algorithm was found to be the best method for in the estimation of the parameters, the probability function and the reliability function of the compound distribution in cases of natural and contaminateddata.
... Show More
Disease diagnosis with computer-aided methods has been extensively studied and applied in diagnosing and monitoring of several chronic diseases. Early detection and risk assessment of breast diseases based on clinical data is helpful for doctors to make early diagnosis and monitor the disease progression. The purpose of this study is to exploit the Convolutional Neural Network (CNN) in discriminating breast MRI scans into pathological and healthy. In this study, a fully automated and efficient deep features extraction algorithm that exploits the spatial information obtained from both T2W-TSE and STIR MRI sequences to discriminate between pathological and healthy breast MRI scans. The breast MRI scans are preprocessed prior to the feature
... Show MoreRecently, digital communication has become a critical necessity and so the Internet has become the most used medium and most efficient for digital communication. At the same time, data transmitted through the Internet are becoming more vulnerable. Therefore, the issue of maintaining secrecy of data is very important, especially if the data is personal or confidential. Steganography has provided a reliable method for solving such problems. Steganography is an effective technique in secret communication in digital worlds where data sharing and transfer is increasing through the Internet, emails and other ways. The main challenges of steganography methods are the undetectability and the imperceptibility of con
... Show MoreMeasuring the efficiency of postgraduate and undergraduate programs is one of the essential elements in educational process. In this study, colleges of Baghdad University and data for the academic year (2011-2012) have been chosen to measure the relative efficiencies of postgraduate and undergraduate programs in terms of their inputs and outputs. A relevant method to conduct the analysis of this data is Data Envelopment Analysis (DEA). The effect of academic staff to the number of enrolled and alumni students to the postgraduate and undergraduate programs are the main focus of the study.
Business organizations have faced many challenges in recent times, most important of which is information technology, because it is widely spread and easy to use. Its use has led to an increase in the amount of data that business organizations deal with an unprecedented manner. The amount of data available through the internet is a problem that many parties seek to find solutions for. Why is it available there in this huge amount randomly? Many expectations have revealed that in 2017, there will be devices connected to the internet estimated at three times the population of the Earth, and in 2015 more than one and a half billion gigabytes of data was transferred every minute globally. Thus, the so-called data mining emerged as a
... Show MoreAbstract :H.pylori is an important cause of gastric duodenal disease, including gastric ulcers, Mucosa-associated lymphoid tissue (MALT), and gastric carcinoma. biosensors are becoming the most extensively studied discipline because the easy, rapid, low-cost, highly sensitive, and highly selective biosensors contribute to advances in next-generation medicines such as individualized medicine and ultrasensitive point-of-care detection of markers for diseases. Five of ten patients diagnosed with H.pylori ranging in age from 15–85 participated in this research. who [gastritis, duodenitis, duodenal ulcer (DU), and peptic ulcer (PU)] Suspected H.pylori colonies w
... Show MoreWithin the framework of big data, energy issues are highly significant. Despite the significance of energy, theoretical studies focusing primarily on the issue of energy within big data analytics in relation to computational intelligent algorithms are scarce. The purpose of this study is to explore the theoretical aspects of energy issues in big data analytics in relation to computational intelligent algorithms since this is critical in exploring the emperica aspects of big data. In this chapter, we present a theoretical study of energy issues related to applications of computational intelligent algorithms in big data analytics. This work highlights that big data analytics using computational intelligent algorithms generates a very high amo
... Show MoreClassification of imbalanced data is an important issue. Many algorithms have been developed for classification, such as Back Propagation (BP) neural networks, decision tree, Bayesian networks etc., and have been used repeatedly in many fields. These algorithms speak of the problem of imbalanced data, where there are situations that belong to more classes than others. Imbalanced data result in poor performance and bias to a class without other classes. In this paper, we proposed three techniques based on the Over-Sampling (O.S.) technique for processing imbalanced dataset and redistributing it and converting it into balanced dataset. These techniques are (Improved Synthetic Minority Over-Sampling Technique (Improved SMOTE), Border
... Show MoreThe purpose of this study was to measure serum levels of insulin-like growth factor-binding protein (IGFBP7), Insulin-like Growth Factor 1 (IGF-1), Growth Hormone (GH), Interleukin 6 (IL-6) and insulin in acromegaly patients and healthy controls. The acromegaly group had 60 patients, while the population group had 30 people who had never had acromegaly before. The concentration of IGFBP7, IGF-1, GH, IL-6, and insulin were determined. The results of the present study indicate that IGFBP7 level in the acromegaly group was significantly lower (1.690.07 ng/mL vs. 2.740.12 ng/mL, respectively, p = 0.001). IGF-1, GH, IL-6, and insulin concentrations were also significantly higher in acromegaly patients. The diagnostic accuracy (2.194) was exce
... Show More