We dealt with the nature of the points under the influence of periodic function chaotic functions associated functions chaotic and sufficient conditions to be a very chaotic functions Palace
we study how to control the dynamics of excitable systems by using the phase control technique.We study how to control nonlinear semiconductor laser dynamics with optoelectronic feedback using the phase control method. The phase control method uses the phase difference between a small.added frequenc y and the main driving frequency to suppress chaos, which leads to various periodic orbits. The experimental studying for the evaluation of chaos modulation behavior are considered in two conditions, the first condition, when one frequency of the external perturbation is varied, secondly, when two of these perturbations are changed. The chaotic system becomes regular under one frequency or two freq
... Show MoreIn this paper, the first integrals of Darboux type of the generalized Sprott ET9 chaotic system will be studied. This study showed that the system has no polynomial, rational, analytic and Darboux first integrals for any value of . All the Darboux polynomials for this system were derived together with its exponential factors. Using the weight homogenous polynomials helped us prove the process.
In this work, a simple and new method is proposed to simultaneously improve the physical layer security and the transmission performance of the optical orthogonal frequency division multiplexing system, by combining orthogonal frequency division multiplexing technique with chaotic theory principles. In the system, a 2-D chaotic map is employed. The introduced system replaces complex operations such as matrix multiplication with simple operations such as multiplexing and inverting. The system performance in terms of bit error rate (BER) and peak to average ratio (PAPR) is enhanced. The system is simulated using Optisystem15 with a MATLAB2016 and for different constellations. The simulation results showed that the BE
... Show MoreIn this paper, we proposed to zoom Volterra equations system Altfazlah linear complementarity of the first type in this approximation were first forming functions notch Baschtdam matrix and then we discussed the approach and stability, to notch functions
Discourse markers are expressions used to connect sentences to what comes before or after and indicate a speaker's attitude to what he is saying.As linguistic items, they have important functions in discourses of various styles or registers. And being connective elements, discourse markers relate sentences, clauses and paragraphs to each other. "One of the most prominent function of discourse markers, however, is to signal the kinds of relations a speaker perceives between different parts of the discourse". (Lenk 1997: 2) Through political discourse, different types of discourse markers are used. This paper deals with the importance and functions of discourse markers and tries to shed light on the kinds of discourse markers used in polit
... Show MoreIn this paper, a differential operator is used to generate a subclass of analytic and univalent functions with positive coefficients. The studied class of the functions includes:
which is defined in the open unit disk satisfying the following condition
This leads to the study of properties such as coefficient bounds, Hadamard product, radius of close –to- convexity, inclusive properties, and (n, τ) –neighborhoods for functions belonging to our class.
The aim of this paper is to approximate multidimensional functions by using the type of Feedforward neural networks (FFNNs) which is called Greedy radial basis function neural networks (GRBFNNs). Also, we introduce a modification to the greedy algorithm which is used to train the greedy radial basis function neural networks. An error bound are introduced in Sobolev space. Finally, a comparison was made between the three algorithms (modified greedy algorithm, Backpropagation algorithm and the result is published in [16]).
The main objective of this paper is to introduce and study the generality differential operator involving the q-Mittag-Leffler function on certain subclasses of analytic functions. Also, we investigate the inclusion properties of these classes, by using the concept of subordination between analytic functions.
In this paper we introduce a new class of degree of best algebraic approximation polynomial Α,, for unbounded functions in weighted space Lp,α(X), 1 ∞ .We shall prove direct and converse theorems for best algebraic approximation in terms modulus of smoothness in weighted space
In this present paper, we obtain some differential subordination and superordination results, by using generalized operators for certain subclass of analytic functions in the open unit disk. Also, we derive some sandwich results.