The primary objective of this paper is to improve a biometric authentication and classification model using the ear as a distinct part of the face since it is unchanged with time and unaffected by facial expressions. The proposed model is a new scenario for enhancing ear recognition accuracy via modifying the AdaBoost algorithm to optimize adaptive learning. To overcome the limitation of image illumination, occlusion, and problems of image registration, the Scale-invariant feature transform technique was used to extract features. Various consecutive phases were used to improve classification accuracy. These phases are image acquisition, preprocessing, filtering, smoothing, and feature extraction. To assess the proposed system's performance. method, the classification accuracy has been compared using different types of classifiers. These classifiers are Naïve Bayesian, KNN, J48, and SVM. The range of the identification accuracy for all the processed databases using the proposed scenario is between (%93.8- %97.8). The system was executed using MATHLAB R2017, 2.10 GHz processor, and 4 GB RAM.
In this paper , two method which deal with finding the optimal value for adaptive smoothing constant, are compared .This constant is used in adaptive Single Exponential Smoothing (ASES).
The comparing is between a method uses time domain and another uses frequency domain when the data contain outlier value for autoregressive model of order one AR(1) , or Markov Model, when the time series are stationary and non stationary with deferent samples .
A new (Reversed Phase- High Performance Liquid chromatography) RP-HPLC method with Ultraviolet-Visible spectrophotometry has been optimized and validated for the simultaneous extraction and determination of antioxidants present in Iraqi calyces of Hibiscus Sabdraffia Linn. The method is based on using ultrasonic bath for extracting antioxidants. Limit of detection in μg/ml of Vitamin C, Sabdaretine, Gossypetine, Hibiscetine, Anthocyanins, Dephinidin-3-glucoside were113.8294×10-6,123.0453×10-6,70.3681×10-6,59.6730×10-6,148.1710×10-6,and125.3481×10-6 respectively. The concentration of antioxidants found in dry spacemen of calyces of Iraqi Hibiscus Sabdraffia Linn. under study: Vitamin C, Sabdaretine, Gossypetine, Hibiscetine, Anthoc
... Show MoreVarious of 2,5- disubstituted 1,3,4-oxadiazole (Schiff base, ?- lactam and azo) were synthesized from 2,5-di (4,4?-amino-1,3,4-oxadiazole which usequently synth-esized from mixture of 4- amino benzoic acid and hydrazine arch of polyphosphorus acid. The synthesized compounds were cherecterized by using some spectral data (UV, FT-IR , and 1H-NMR)
New ligands, N1, N4-bis (benzo[d]thiazol-2- ylcarbamothioyl) succinamide (L1) and N1, N4- bis (benzylcarbamothioyl)succinamide (L2), derived from succinyl chloride and 2-amino benzothiazole or benzylamine, respectively, have been used to prepare a set of transition metal complexes with the general formula [M2(L)Cl4], where L=L1 or L2, M = Mn(II), Ni(II), Cu(II), Cd(II), Co(II), Zn(II) or Hg(II). The synthesized compounds were characterized using various analytical techniques including TGA, 13C NMR, mass spectroscopy, 1H and Fourier-transform infrared (FTIR) spectroscopy, magnetic measurement, molar conductivity, electronic spectrum, (%M, %C, %H, %N) and atomic absorption flame (AAF) analysis. The results showed that (L1, L2) bin
... Show MoreAlzheimer's disease (AD) increasingly affects the elderly and is a major killer of those 65 and over. Different deep-learning methods are used for automatic diagnosis, yet they have some limitations. Deep Learning is one of the modern methods that were used to detect and classify a medical image because of the ability of deep Learning to extract the features of images automatically. However, there are still limitations to using deep learning to accurately classify medical images because extracting the fine edges of medical images is sometimes considered difficult, and some distortion in the images. Therefore, this research aims to develop A Computer-Aided Brain Diagnosis (CABD) system that can tell if a brain scan exhibits indications of
... Show MoreMammography is at present one of the available method for early detection of masses or abnormalities which is related to breast cancer. The most common abnormalities that may indicate breast cancer are masses and calcifications. The challenge lies in early and accurate detection to overcome the development of breast cancer that affects more and more women throughout the world. Breast cancer is diagnosed at advanced stages with the help of the digital mammogram images. Masses appear in a mammogram as fine, granular clusters, which are often difficult to identify in a raw mammogram. The incidence of breast cancer in women has increased significantly in recent years.
This paper proposes a computer aided diagnostic system for the extracti