Crime is considered as an unlawful activity of all kinds and it is punished by law. Crimes have an impact on a society's quality of life and economic development. With a large rise in crime globally, there is a necessity to analyze crime data to bring down the rate of crime. This encourages the police and people to occupy the required measures and more effectively restricting the crimes. The purpose of this research is to develop predictive models that can aid in crime pattern analysis and thus support the Boston department's crime prevention efforts. The geographical location factor has been adopted in our model, and this is due to its being an influential factor in several situations, whether it is traveling to a specific area or living in it to assist people in recognizing between a secured and an unsecured environment. Geo-location, combined with new approaches and techniques, can be extremely useful in crime investigation. The aim is focused on comparative study between three supervised learning algorithms. Where learning used data sets to train and test it to get desired results on them. Various machine learning algorithms on the dataset of Boston city crime are Decision Tree, Naïve Bayes and Logistic Regression classifiers have been used here to predict the type of crime that happens in the area. The outputs of these methods are compared to each other to find the one model best fits this type of data with the best performance. From the results obtained, the Decision Tree demonstrated the highest result compared to Naïve Bayes and Logistic Regression.
Ground-based active optical sensors (GBAOS) have been successfully used in agriculture to predict crop yield potential (YP) early in the season and to improvise N rates for optimal crop yield. However, the models were found weak or inconsistent due to environmental variation especially rainfall. The objectives of the study were to evaluate if GBAOS could predict YP across multiple locations, soil types, cultivation systems, and rainfall differences. This study was carried from 2011 to 2013 on corn (Zea mays L.) in North Dakota, and in 2017 in potatoes in Maine. Six N rates were used on 50 sites in North Dakota and 12 N rates on two sites, one dryland and one irrigated, in Maine. Two active GBAOS used for this study were GreenSeeker and Holl
... Show MorePoetry is regarded an interesting area of inquiry in linguistic studies due to its eccentric and aesthetic use of language. A lot of studies have been carried out so far for the analysis of poetry, yet few have dealt with pastoral poetry. The present research attempts to investigate the language of pastoral poetry in two different languages i.e. English and Arabic with the aim of finding similarities and differences. The data of the study consists of one English and one Arabic pastoral poems. Leech and Short's (2007) checklist is used as a model for analysis. The findings of the study reveal that there are more similarities than differences between English and Arabic pastoral poems as the poems rely on contrast
... Show MoreA novel median filter based on crow optimization algorithms (OMF) is suggested to reduce the random salt and pepper noise and improve the quality of the RGB-colored and gray images. The fundamental idea of the approach is that first, the crow optimization algorithm detects noise pixels, and that replacing them with an optimum median value depending on a criterion of maximization fitness function. Finally, the standard measure peak signal-to-noise ratio (PSNR), Structural Similarity, absolute square error and mean square error have been used to test the performance of suggested filters (original and improved median filter) used to removed noise from images. It achieves the simulation based on MATLAB R2019b and the resul
... Show MoreAbstract:
The great importance that distinguish these factorial experiments made them subject a desirable for use and application in many fields, particularly in the field of agriculture, which is considered the broad area for experimental designs applications.
And the second case for the factorial experiment, which faces researchers have great difficulty in dealing with the case unbalance we mean that frequencies treatments factorial are not equal meaning (that is allocated a number unequal of blocks or units experimental per tre
... Show MoreIn the present work a dynamic analysis technique have been developed to investigate and characterize the quantity of elastic module degradation of cracked cantilever plates due to presence of a defect such as surface of internal crack under free vibration. A new generalized technique represents the first step in developing a health monitoring system, the effects of such defects on the modal frequencies has been the main key quantifying the elasticity modulii due to presence any type of un-visible defect. In this paper the finite element method has been used to determine the free vibration characteristics for cracked cantilever plate (internal flaws), this present work achieved by different position of crack. Stiffness re
... Show MoreThe current research aims to provide a conceptual and applied frame on the subject of multi- level analysis in the research of business administration. The research tries to address some of the problems that befall the preparation of research and studies at the Arab level and local level, where the unity of theory and measurement and analysis, as well as clarify the various types of conceptual constructs and give researchers the ability to distinguish different models related to the level of analysis. On the other hand, this research provides an example of
... Show MoreIncremental sheet metal forming is a modern technique of sheet metal forming in which a uniform sheet is locally deformed during the progressive action of a forming tool. The tool movement is governed by a CNC milling machine. The tool locally deforms by this way the sheet with pure deformation stretching. In SPIF process, the research is concentrate on the development of predict models for estimate the product quality. Using simulated annealing algorithm (SAA), Surface quality in SPIF has been modeled. In the development of this predictive model, spindle speed, feed rate and step depth have been considered as model parameters. Maximum peak height (Rz) and Arithmetic mean surface roughness (Ra) are used as response parameter to assess th
... Show MoreThe influx of data in bioinformatics is primarily in the form of DNA, RNA, and protein sequences. This condition places a significant burden on scientists and computers. Some genomics studies depend on clustering techniques to group similarly expressed genes into one cluster. Clustering is a type of unsupervised learning that can be used to divide unknown cluster data into clusters. The k-means and fuzzy c-means (FCM) algorithms are examples of algorithms that can be used for clustering. Consequently, clustering is a common approach that divides an input space into several homogeneous zones; it can be achieved using a variety of algorithms. This study used three models to cluster a brain tumor dataset. The first model uses FCM, whic
... Show More