Preferred Language
Articles
/
bsj-6310
A Crime Data Analysis of Prediction Based on Classification Approaches
...Show More Authors

Crime is considered as an unlawful activity of all kinds and it is punished by law. Crimes have an impact on a society's quality of life and economic development. With a large rise in crime globally, there is a necessity to analyze crime data to bring down the rate of crime. This encourages the police and people to occupy the required measures and more effectively restricting the crimes. The purpose of this research is to develop predictive models that can aid in crime pattern analysis and thus support the Boston department's crime prevention efforts. The geographical location factor has been adopted in our model, and this is due to its being an influential factor in several situations, whether it is traveling to a specific area or living in it to assist people in recognizing between a secured and an unsecured environment.  Geo-location, combined with new approaches and techniques, can be extremely useful in crime investigation. The aim is focused on comparative study between three supervised learning algorithms. Where learning used data sets to train and test it to get desired results on them. Various machine learning algorithms on the dataset of Boston city crime are Decision Tree, Naïve Bayes and Logistic Regression classifiers have been used here to predict the type of crime that happens in the area. The outputs of these methods are compared to each other to find the one model best fits this type of data with the best performance. From the results obtained, the Decision Tree demonstrated the highest result compared to Naïve Bayes and Logistic Regression.

Scopus Clarivate Crossref
View Publication Preview PDF
Quick Preview PDF
Publication Date
Wed Mar 08 2023
Journal Name
Sensors
A Critical Review of Remote Sensing Approaches and Deep Learning Techniques in Archaeology
...Show More Authors

To date, comprehensive reviews and discussions of the strengths and limitations of Remote Sensing (RS) standalone and combination approaches, and Deep Learning (DL)-based RS datasets in archaeology have been limited. The objective of this paper is, therefore, to review and critically discuss existing studies that have applied these advanced approaches in archaeology, with a specific focus on digital preservation and object detection. RS standalone approaches including range-based and image-based modelling (e.g., laser scanning and SfM photogrammetry) have several disadvantages in terms of spatial resolution, penetrations, textures, colours, and accuracy. These limitations have led some archaeological studies to fuse/integrate multip

... Show More
View Publication
Scopus (17)
Crossref (13)
Scopus Clarivate Crossref
Publication Date
Mon Mar 01 2010
Journal Name
Journal Of Accounting And Financial Studies ( Jafs )
أهمية تحليل بيانات النتائج المالية للعملاء: بحث تطبيقي عن التدقيق والمراجعة في سلطنة عمان
...Show More Authors

The main function of the auditing process is to get a financial report provide information about the activities of the economic entities. The financial report's information is intended to be useful in making decisions and planning for entities future. Such information became more effective and efficient if the auditors process analytical auditing procedures, by using those financial analysis tools, which mean more detailed indicators.

The objectives of this research are to investigate auditor's use of analytical procedures in Oman and identify the main objectives for using these procedures. A questionnaire was used to gather the data for the study. A sample of 65 auditors and the response rate was 80% (52).

  &n

... Show More
View Publication Preview PDF
Publication Date
Tue Jan 31 2023
Journal Name
International Journal Of Nonlinear Analysis And Applications
Survey on intrusion detection system based on analysis concept drift: Status and future directions
...Show More Authors

Nowadays, internet security is a critical concern; the One of the most difficult study issues in network security is "intrusion detection". Fight against external threats. Intrusion detection is a novel method of securing computers and data networks that are already in use. To boost the efficacy of intrusion detection systems, machine learning and deep learning are widely deployed. While work on intrusion detection systems is already underway, based on data mining and machine learning is effective, it requires to detect intrusions by training static batch classifiers regardless considering the time-varying features of a regular data stream. Real-world problems, on the other hand, rarely fit into models that have such constraints. Furthermor

... Show More
View Publication
Publication Date
Sat Jun 01 2019
Journal Name
Journal Of Economics And Administrative Sciences
The Use of One-Way Multivariate Analysis of Variance in the Impact of the Database on the Fields of Banking Service in Some Iraqi Banks
...Show More Authors

 The purpose of this paper is to recognize the impact of database levels on fields of banking service (provision of remittance services and transfer of funds, save financial deposits, provision of personal loans services) in some of Iraqi banks using one-way multivariate analysis of variance. The paper population consisted of (120) employees, then a random stratified sample of (104) employees was taken. A questionnaire paper consists of (24) items were designed in order to analyze by one-Way multivariate analysis of variance (MANOVA) using SPSS.One of the main findings of the current paper is that there is an impact of database on fields of banking service in Iraqi banks (Al Rafidain and Al Rasheed).

View Publication Preview PDF
Crossref
Publication Date
Wed Feb 01 2017
Journal Name
Journal Of Economics And Administrative Sciences
A comparison between the logistic regression model and Linear Discriminant analysis using Principal Component unemployment data for the province of Baghdad
...Show More Authors

     The objective of the study is to demonstrate the predictive ability is better between the logistic regression model and Linear Discriminant function using the original data first and then the Home vehicles to reduce the dimensions of the variables for data and socio-economic survey of the family to the province of Baghdad in 2012 and included a sample of 615 observation with 13 variable, 12 of them is an explanatory variable and the depended variable is number of workers and the unemployed.

     Was conducted to compare the two methods above and it became clear by comparing the  logistic regression model best of a Linear Discriminant  function written

... Show More
View Publication Preview PDF
Crossref
Publication Date
Mon Jan 01 2024
Journal Name
Aip Conference Proceedings
Modeling and analysis of thermal contrast based on LST algorithm for Baghdad city
...Show More Authors

View Publication
Scopus (1)
Crossref (1)
Scopus Crossref
Publication Date
Sun Mar 15 2020
Journal Name
Journal Of The College Of Education For Women
Data-Driven Approach for Teaching Arabic as a Foreign Language: Eygpt
...Show More Authors

Corpus linguistics is a methodology in studying language through corpus-based research. It differs from a traditional approach in studying a language (prescriptive approach) in its insistence on the systematic study of authentic examples of language in use (descriptive approach).A “corpus” is a large body of machine-readable structurally collected naturally occurring linguistic data, either written texts or a transcription of recorded speech, which can be used as a starting-point of linguistic description or as a means of verifying hypotheses about a language.  In the past decade, interest has grown tremendously in the use of language corpora for language education. The ways in which corpora have been employed in language pedago

... Show More
View Publication Preview PDF
Publication Date
Tue Aug 27 2024
Journal Name
Tem Journal
Preparing the Electrical Signal Data of the Heart by Performing Segmentation Based on the Neural Network U-Net
...Show More Authors

Research on the automated extraction of essential data from an electrocardiography (ECG) recording has been a significant topic for a long time. The main focus of digital processing processes is to measure fiducial points that determine the beginning and end of the P, QRS, and T waves based on their waveform properties. The presence of unavoidable noise during ECG data collection and inherent physiological differences among individuals make it challenging to accurately identify these reference points, resulting in suboptimal performance. This is done through several primary stages that rely on the idea of preliminary processing of the ECG electrical signal through a set of steps (preparing raw data and converting them into files tha

... Show More
View Publication
Scopus Clarivate Crossref
Publication Date
Wed Nov 01 2023
Journal Name
Journal Of King Saud University - Engineering Sciences
Particle swarm optimization technique-based prediction of peak ground acceleration of Iraq’s tectonic regions
...Show More Authors

Peak ground acceleration (PGA) is one of the critical factors that affect the determination of earthquake intensity. PGA is generally utilized to describe ground motion in a particular zone and is able to efficiently predict the parameters of site ground motion for the design of engineering structures. Therefore, novel models are developed to forecast PGA in the case of the Iraqi database, which utilizes the particle swarm optimization (PSO) approach. A data set of 187 historical ground-motion recordings in Iraq’s tectonic regions was used to build the explicit proposed models. The proposed PGA models relate to different seismic parameters, including the magnitude of the earthquake (Mw), average shear-wave velocity (VS30), focal depth (FD

... Show More
View Publication Preview PDF
Scopus (20)
Crossref (5)
Scopus Crossref
Publication Date
Tue Jul 09 2024
Journal Name
Diagnostics
A Novel Hybrid Machine Learning-Based System Using Deep Learning Techniques and Meta-Heuristic Algorithms for Various Medical Datatypes Classification
...Show More Authors

Medicine is one of the fields where the advancement of computer science is making significant progress. Some diseases require an immediate diagnosis in order to improve patient outcomes. The usage of computers in medicine improves precision and accelerates data processing and diagnosis. In order to categorize biological images, hybrid machine learning, a combination of various deep learning approaches, was utilized, and a meta-heuristic algorithm was provided in this research. In addition, two different medical datasets were introduced, one covering the magnetic resonance imaging (MRI) of brain tumors and the other dealing with chest X-rays (CXRs) of COVID-19. These datasets were introduced to the combination network that contained deep lea

... Show More
View Publication
Scopus (4)
Crossref (5)
Scopus Clarivate Crossref