Crime is considered as an unlawful activity of all kinds and it is punished by law. Crimes have an impact on a society's quality of life and economic development. With a large rise in crime globally, there is a necessity to analyze crime data to bring down the rate of crime. This encourages the police and people to occupy the required measures and more effectively restricting the crimes. The purpose of this research is to develop predictive models that can aid in crime pattern analysis and thus support the Boston department's crime prevention efforts. The geographical location factor has been adopted in our model, and this is due to its being an influential factor in several situations, whether it is traveling to a specific area or living in it to assist people in recognizing between a secured and an unsecured environment. Geo-location, combined with new approaches and techniques, can be extremely useful in crime investigation. The aim is focused on comparative study between three supervised learning algorithms. Where learning used data sets to train and test it to get desired results on them. Various machine learning algorithms on the dataset of Boston city crime are Decision Tree, Naïve Bayes and Logistic Regression classifiers have been used here to predict the type of crime that happens in the area. The outputs of these methods are compared to each other to find the one model best fits this type of data with the best performance. From the results obtained, the Decision Tree demonstrated the highest result compared to Naïve Bayes and Logistic Regression.
In this research, the nonparametric technique has been presented to estimate the time-varying coefficients functions for the longitudinal balanced data that characterized by observations obtained through (n) from the independent subjects, each one of them is measured repeatedly by group of specific time points (m). Although the measurements are independent among the different subjects; they are mostly connected within each subject and the applied techniques is the Local Linear kernel LLPK technique. To avoid the problems of dimensionality, and thick computation, the two-steps method has been used to estimate the coefficients functions by using the two former technique. Since, the two-
... Show MoreThe main idea that led me to write such research paper within the framework of Germanic linguistics is that I have not found any topic dealing with the term correlate in the German language, except in several articles in linguistic journals as well as one topic in a book describing the use of such a linguistic phenomenon in the language system. The research initially deals with the definition of the correlate at the level of the German language system. Correlate is unity describes specific relation of two sentences and identifies denoted constructs. Correlate is called a placeholder at the syntactic level because it does not occupy its original topological fields in the syntactic structure. The correlate (es) or the prepositiona
... Show MoreThe aim of this research is to identify the availability of visual thinking skills in the chemistry textbook scheduled for the third intermediate grade for the academic year (2020-2021) in the Republic of Iraq. The study sample consisted of all (85) images contained in the chemistry course for the third intermediate grade, which are (85) form using the curriculum. Analytical descriptive A list of visual thinking skills was prepared, and the unit of form was adopted as a unit of analysis and repetition as a unit of counting, and frequencies and percentages were used for statistical treatment, and validity and reliability were calculated. And using the Holste equation. The following results were reached: The skill
... Show MoreIn this research, we find the Bayesian formulas and the estimation of Bayesian expectation for product system of Atlas Company. The units of the system have been examined by helping the technical staff at the company and by providing a real data the company which manufacturer the system. This real data include the failed units for each drawn sample, which represents the total number of the manufacturer units by the company system. We calculate the range for each estimator by using the Maximum Likelihood estimator. We obtain that the expectation-Bayesian estimation is better than the Bayesian estimator of the different partially samples which were drawn from the product system after it checked by the
... Show Moreيتنامى يوما بعد يوم استخدام السيارات وتتعاضم اعدادها ، فهذا هو عصر السرعة، وخاصة في مجال النقل والمواصلات، والتي تتحقق باستخدام وسائل النقل المختلفة ومن بينها السيارات، وبالتالي اصبحت هذه الوسيلة ضرورية لتحقيق هذه السرعة ومن ضرورات الحياة في انجاز الاعمال.
وتتبارى مصانع السيارات فيما بينها لانتاج انواع السيارات بمواصفات عالية من المتانة والامان والراحة، وفي ذات الوقت اصبحت هندسة الطرق
... Show MoreMotives: Baghdad is the capital city and an important political, administrative, social, cultural and economic centre of Iraq. Baghdad’s growth and development has been significantly influenced by efforts to accommodate various needs of its steadily growing population. Uncontrolled population and urban growth have exerted negative effects in numerous dimensions, including environmental sustainability because urban expansion occurred in green spaces within the city and the surrounding areas.Aim: The aim of this study was to examine the planning solutions in Baghdad’s green areas in the past and at present, and to identify the key changes in the city’s green areas, including changes in the ratio of green urban spaces to the tota
... Show MoreWith the rapid development of smart devices, people's lives have become easier, especially for visually disabled or special-needs people. The new achievements in the fields of machine learning and deep learning let people identify and recognise the surrounding environment. In this study, the efficiency and high performance of deep learning architecture are used to build an image classification system in both indoor and outdoor environments. The proposed methodology starts with collecting two datasets (indoor and outdoor) from different separate datasets. In the second step, the collected dataset is split into training, validation, and test sets. The pre-trained GoogleNet and MobileNet-V2 models are trained using the indoor and outdoor se
... Show More