Crime is considered as an unlawful activity of all kinds and it is punished by law. Crimes have an impact on a society's quality of life and economic development. With a large rise in crime globally, there is a necessity to analyze crime data to bring down the rate of crime. This encourages the police and people to occupy the required measures and more effectively restricting the crimes. The purpose of this research is to develop predictive models that can aid in crime pattern analysis and thus support the Boston department's crime prevention efforts. The geographical location factor has been adopted in our model, and this is due to its being an influential factor in several situations, whether it is traveling to a specific area or living in it to assist people in recognizing between a secured and an unsecured environment. Geo-location, combined with new approaches and techniques, can be extremely useful in crime investigation. The aim is focused on comparative study between three supervised learning algorithms. Where learning used data sets to train and test it to get desired results on them. Various machine learning algorithms on the dataset of Boston city crime are Decision Tree, Naïve Bayes and Logistic Regression classifiers have been used here to predict the type of crime that happens in the area. The outputs of these methods are compared to each other to find the one model best fits this type of data with the best performance. From the results obtained, the Decision Tree demonstrated the highest result compared to Naïve Bayes and Logistic Regression.
This research aims to clarify the advantages of using the regression method as analytical procedure in the tax audit to reducing the examination cost , time, effort, human and material resources, and represents an applied study in the General Commission of taxes. In order to achieve its objectives the research has used in the theoretical side the descriptive approach (analytical), and in the practical side regression method has been applied to the research sample represented by the soft drinks company that is subject to the tax settlement for the year 2014, where the value of sales has been verified by using the regression method without conductinga comprehensive examination. The most important results of the research indicate that the r
... Show MoreThe research aims to identify the theoretical foundations for measuring and analyzing quality costs and continuous improvement, as well as measuring and analyzing quality costs for the Directorate of Electricity Supply / Middle Euphrates and continuous improvement of the distribution of electrical energy,The problem was represented by the high costs of failure and waste in electrical energy result to the excesses on the network and the missing (lost) energy,Thus, measuring and analyzing quality costs for the distribution of electrical energy and identifying continuous improvement leads to a reduction in missing and an increase in sales, as the research reached many conclusions, the most important of which is the high percentage o
... Show MoreThe data preprocessing step is an important step in web usage mining because of the nature of log data, which are heterogeneous, unstructured, and noisy. Given the scalability and efficiency of algorithms in pattern discovery, a preprocessing step must be applied. In this study, the sequential methodologies utilized in the preprocessing of data from web server logs, with an emphasis on sub-phases, such as session identification, user identification, and data cleansing, are comprehensively evaluated and meticulously examined.
In this research an Artificial Neural Network (ANN) technique was applied for the prediction of Ryznar Index (RI) of the flowing water from WTPs in Al-Karakh side (left side) in Baghdad city for year 2013. Three models (ANN1, ANN2 and ANN3) have been developed and tested using data from Baghdad Mayoralty (Amanat Baghdad) including drinking water quality for the period 2004 to 2013. The results indicate that it is quite possible to use an artificial neural networks in predicting the stability index (RI) with a good degree of accuracy. Where ANN 2 model could be used to predict RI for the effluents from Al-Karakh, Al-Qadisiya and Al-Karama WTPs as the highest correlation coefficient were obtained 92.4, 82.9 and 79.1% respectively. For
... Show MoreArtificial pancreas is simulated to handle Type I diabetic patients under intensive care by automatically controlling the insulin infusion rate. A Backstepping technique is used to apply the effect of PID controller to blood glucose level since there is no direct relation between insulin infusion (the manipulated variable) and glucose level in Bergman’s system model subjected to an oral glucose tolerance test by applying a meal translated into a disturbance. Backstepping technique is usually recommended to stabilize and control the states of Bergman's class of nonlinear systems. The results showed a very satisfactory behavior of glucose deviation to a sudden rise represented by the meal that increase the blood glucose
... Show More
Deception is an inseparable facet of political discourse in attaining strategic political gains though compromising public opinion. However, the employment of discursive deception strategies by the policy-making institutions of think tanks has not received due attention in the literature. The current study aims at exploring how the ideologizing deception strategies are utilized by the conservative American think tank of the Washington Institute to reproduce socio-political realities and re-shape public opinion. To fulfill this task, van Dijk’s (2000) notion of ideological polarization which shows positive self-representation and negative other representation is adopted to conduct a critical discourse analysis of four Arabic texts relea
... Show MoreA recently reported Nile red (NR) dye conjugated with benzothiadiazole species paves the way for the development of novel organic-based sensitizers used in solar cells whose structures are susceptible to modifications. Thus, six novel NR structures were derived from two previously developed structures in laboratories. In this study, density functional theory (DFT) calculations and time-dependent DFT (TD-DFT) were used to determine the optoelectronic properties of the NR-derived moieties such as absorption spectra. Various linkers were investigated in an attempt to understand the impact of π-linkers on the optoelectronic properties. According to the findings, the presence of furan species led to the planarity of the molecule and a reduction
... Show More