Crime is considered as an unlawful activity of all kinds and it is punished by law. Crimes have an impact on a society's quality of life and economic development. With a large rise in crime globally, there is a necessity to analyze crime data to bring down the rate of crime. This encourages the police and people to occupy the required measures and more effectively restricting the crimes. The purpose of this research is to develop predictive models that can aid in crime pattern analysis and thus support the Boston department's crime prevention efforts. The geographical location factor has been adopted in our model, and this is due to its being an influential factor in several situations, whether it is traveling to a specific area or living in it to assist people in recognizing between a secured and an unsecured environment. Geo-location, combined with new approaches and techniques, can be extremely useful in crime investigation. The aim is focused on comparative study between three supervised learning algorithms. Where learning used data sets to train and test it to get desired results on them. Various machine learning algorithms on the dataset of Boston city crime are Decision Tree, Naïve Bayes and Logistic Regression classifiers have been used here to predict the type of crime that happens in the area. The outputs of these methods are compared to each other to find the one model best fits this type of data with the best performance. From the results obtained, the Decision Tree demonstrated the highest result compared to Naïve Bayes and Logistic Regression.
The shear strength of soil is one of the most important soil properties that should be identified before any foundation design. The presence of gypseous soil exacerbates foundation problems. In this research, an approach to forecasting shear strength parameters of gypseous soils based on basic soil properties was created using Artificial Neural Networks. Two models were built to forecast the cohesion and the angle of internal friction. Nine basic soil properties were used as inputs to both models for they were considered to have the most significant impact on soil shear strength, namely: depth, gypsum content, passing sieve no.200, liquid limit, plastic limit, plasticity index, water content, dry unit weight, and initial
... Show MoreThe provided research paper offers a thorough analysis of the semiotic analysis present in tobacco-free initiative advertisements from the year 2021. The study delves into the intricate process of decoding the diverse signs, symbols, and visual components integrated into these anti-smoking campaigns. The core aim of this investigation is to comprehend and explore the semiotic tactics that underlie these advertisements, with a particular emphasis on visual communication as a pivotal tool in shaping the public's attitudes and behaviors towards tobacco usage. The research introduces a significant theoretical framework, the "Taxonomy of Image-Text Relations and Functions" theory, as proposed by Emily E. Marsh and Marilyn Dom
... Show Morepatterns of utterance stress in discourse direct attention to specific themes and reactions, controlling the flow and coherence of conversation. this study examines the utterance stress in Steve Harvey's selected episodes from a phono-stylistic perspective. this study is hoped to improve understanding of linguistic mechanism in talk show communication, highlighting the importance of phonetic features in transmitting meaning and increasing broadcast conversation participation. the researcher concentrates on the types of focus functions of utterance stress of some episodes available on YouTube. to conduct the analysis, the researcher adopts (Carr, 2013; Davenport& Hannahs 2005) to analyze utterance stress and Leech and Short (2007
... Show MoreThe researchers wanted to make a new azo imidazole as a follow-up to their previous work. The ligand 4-[(2-Amino-4-phenylazo)-methyl]-cyclohexane carboxylic acid as a derivative of trans-4-(aminomethyl) cyclohexane carboxylic acid diazonium salt, and synthesis a series of its chelate complexes with metalions, characterized these compounds using a variety technique, including elemental analysis, FTIR, LC-Mass, 1H-NMRand UV-Vis spectral process as well TGA, conductivity and magnetic quantifications. Analytical data showed that the Co (II) complex out to 1:1 metal-ligand ratio with square planner and tetrahedral geometry, respectively while 1:2 metal-ligand ratio in the Cu(II), Cr(III), Mn(II), Zn(II), Ru(III)and Rh(III)complexes
... Show MoreThe Dirichlet process is an important fundamental object in nonparametric Bayesian modelling, applied to a wide range of problems in machine learning, statistics, and bioinformatics, among other fields. This flexible stochastic process models rich data structures with unknown or evolving number of clusters. It is a valuable tool for encoding the true complexity of real-world data in computer models. Our results show that the Dirichlet process improves, both in distribution density and in signal-to-noise ratio, with larger sample size; achieves slow decay rate to its base distribution; has improved convergence and stability; and thrives with a Gaussian base distribution, which is much better than the Gamma distribution. The performance depen
... Show MoreSentiment analysis refers to the task of identifying polarity of positive and negative for particular text that yield an opinion. Arabic language has been expanded dramatically in the last decade especially with the emergence of social websites (e.g. Twitter, Facebook, etc.). Several studies addressed sentiment analysis for Arabic language using various techniques. The most efficient techniques according to the literature were the machine learning due to their capabilities to build a training model. Yet, there is still issues facing the Arabic sentiment analysis using machine learning techniques. Such issues are related to employing robust features that have the ability to discrimina
... Show MoreBackground: Knowledge about the prevalence and distribution of pathologies in a particular location is important when a differential diagnosis is being formulated. The aim of this study was to describe the prevalence and the clinicopathological features of odontogenic cysts and tumors affecting the maxilla and to discuss the unusual presentation of those lesions within maxillary sinus.
Materials and Methods: A multicenter retrospective analysis was performed on pathology archives of patients who were diagnosed with maxillary odontogenic cysts and tumors from 2010 to 2020. Data were collected with respect to age, gender and location.
Result: A total of 384 cases was identified, 320 (83.3%) cases were diagnosed as odontogenic
... Show More