Crime is considered as an unlawful activity of all kinds and it is punished by law. Crimes have an impact on a society's quality of life and economic development. With a large rise in crime globally, there is a necessity to analyze crime data to bring down the rate of crime. This encourages the police and people to occupy the required measures and more effectively restricting the crimes. The purpose of this research is to develop predictive models that can aid in crime pattern analysis and thus support the Boston department's crime prevention efforts. The geographical location factor has been adopted in our model, and this is due to its being an influential factor in several situations, whether it is traveling to a specific area or living in it to assist people in recognizing between a secured and an unsecured environment. Geo-location, combined with new approaches and techniques, can be extremely useful in crime investigation. The aim is focused on comparative study between three supervised learning algorithms. Where learning used data sets to train and test it to get desired results on them. Various machine learning algorithms on the dataset of Boston city crime are Decision Tree, Naïve Bayes and Logistic Regression classifiers have been used here to predict the type of crime that happens in the area. The outputs of these methods are compared to each other to find the one model best fits this type of data with the best performance. From the results obtained, the Decision Tree demonstrated the highest result compared to Naïve Bayes and Logistic Regression.
Abstract
Coronavirus has affected many people around the world and caused an increase in the number of hospitalized patients and deaths. The prediction factor may help the physician to classify whether the patient needs more medical attention to decrease mortality and worsening of symptoms. We aimed to study the possible relationship between C reactive protein level and the severity of symptoms and its effect on the prognosis of the disease. And determine patients who require closer respiratory monitoring and more aggressive supportive therapies to avoid poor prognosis. The data was gathered using medical record data, the patient's medical history, and the onset of symptoms, as well as a blood sample to test the
... Show MoreA series of Schiff base-bearing salicylaldehyde moiety compounds (1-4) had been designed, synthesized, subjected to insilico ADMET prediction, molecular docking, characterization by FT-IR, and CHNS analysis techniques, and finally to their Anti-inflammatory profile using cyclooxygenase fluorescence inhibitor screening assay methods along with standard drugs, celecoxib, and diclofenac. The ADMET studies were used to predict which compounds would be suitable for oral administration, as well as absorption sites, bioavailability, TPSA, and drug likeness. According to the results of ADME data, all of the produced chemicals can be absorbed through the GIT and have passed Lipinski’s rule of five. Through molecular docking with PyRx 0.8, these
... Show MoreThe adsorption of Malonic acid, Succinic acid, Adipic acid, and Azelaic acid from their aqueous solutions on zinc oxide surface were investigated. The adsorption efficiency was investigated using various factors such as adsorbent amount, contact time, initial concentration, and temperature. Optimum conditions for acids removal from its aqueous solutions were found to be adsorbent dose (0.2 g), equilibrium contact time (40 minutes), initial acids concentration (0.005 M). Variation of temperature as a function of adsorption efficiency showed that increasing the temperature would result in decreasing the adsorption ability. Kinetic modeling by applying the pseudo-second order model can provide a better fit of the data with a greater correla
... Show MoreThe phenomenon of negative behavior has studied as a social and psychological phenomenon that effect on the performance and life of workers inside and outside the organization. The adoption of this phenomenon is studied in terms of the role of the internal environment of the organization in addressing this behavior, being the variables belong to the field of organizational behavior to see the results of those variables on the Iraqi organizations, since the specificities of it differ from the rest of the Arab and foreign environments. Therefore, this study focused on testing the relationship of the internal environment of the organization and its role in addressing the negative behavior of the workers.
thi
... Show MoreKnowledge of permeability is critical for developing an effective reservoir description. Permeability data may be calculated from well tests, cores and logs. Normally, using well log data to derive estimates of permeability is the lowest cost method. This paper will focus on the evaluation of formation permeability in un-cored intervals for Abughirab field/Asmari reservoir in Iraq from core and well log data. Hydraulic flow unit (HFU) concept is strongly related to the flow zone indicator (FZI) which is a function of the reservoir quality index (RQI). Both measures are based on porosity and permeability of cores. It is assumed that samples with similar FZI values belong to the same HFU. A generated method is also used to calculate permea
... Show MoreIn the present work a modification was made on three equations to represent the
experiment data which results for Iraqi petroleum and natural asphalt. The equations
have been developed for estimating the chemical composition and physical properties
of asphalt cement at different temperature and aging time. The standard deviations of
all equations were calculated.
The modified correlation related to the aging time and temperature with penetration
index and durability index of aged petroleum and natural asphalts were developed.
The first equation represents the relationship between the durability index with aging
time and temperature.
loge(DI)=a1+0.0123(2loge T
... Show MoreThe shear strength of soil is one of the most important soil properties that should be identified before any foundation design. The presence of gypseous soil exacerbates foundation problems. In this research, an approach to forecasting shear strength parameters of gypseous soils based on basic soil properties was created using Artificial Neural Networks. Two models were built to forecast the cohesion and the angle of internal friction. Nine basic soil properties were used as inputs to both models for they were considered to have the most significant impact on soil shear strength, namely: depth, gypsum content, passing sieve no.200, liquid limit, plastic limit, plasticity index, water content, dry unit weight, and initial
... Show MoreThis study aims to model the flank wear prediction equation in metal cutting, depending on the workpiece material properties and almost cutting conditions. A new method of energy transferred solution between the cutting tool and workpiece was introduced through the flow stress of chip formation by using the Johnson-Cook model. To investigate this model, an orthogonal cutting test coupled with finite element analysis was carried out to solve this model and finding a wear coefficient of cutting 6061-T6 aluminum and the given carbide tool.
Prediction of accurate values of residual entropy (SR) is necessary step for the
calculation of the entropy. In this paper, different equations of state were tested for the
available 2791 experimental data points of 20 pure superheated vapor compounds (14
pure nonpolar compounds + 6 pure polar compounds). The Average Absolute
Deviation (AAD) for SR of 2791 experimental data points of the all 20 pure
compounds (nonpolar and polar) when using equations of Lee-Kesler, Peng-
Robinson, Virial truncated to second and to third terms, and Soave-Redlich-Kwong
were 4.0591, 4.5849, 4.9686, 5.0350, and 4.3084 J/mol.K respectively. It was found
from these results that the Lee-Kesler equation was the best (more accurate) one
An application of neural network technique was introduced in modeling the point efficiency of sieve tray, based on a
data bank of around 33l data points collected from the open literature.Two models proposed,using back-propagation
algorithm, the first model network consists: volumetric liquid flow rate (QL), F foctor for gas (FS), liquid density (pL),
gas density (pg), liquid viscosity (pL), gas viscosity (pg), hole diameter (dH), weir height (hw), pressure (P) and surface
tension between liquid phase and gas phase (o). In the second network, there are six parameters as dimensionless
group: Flowfactor (F), Reynolds number for liquid (ReL), Reynolds number for gas through hole (Reg), ratio of weir
height to hole diqmeter