Artificial Neural networks (ANN) are powerful and effective tools in time-series applications. The first aim of this paper is to diagnose better and more efficient ANN models (Back Propagation, Radial Basis Function Neural networks (RBF), and Recurrent neural networks) in solving the linear and nonlinear time-series behavior. The second aim is dealing with finding accurate estimators as the convergence sometimes is stack in the local minima. It is one of the problems that can bias the test of the robustness of the ANN in time series forecasting. To determine the best or the optimal ANN models, forecast Skill (SS) employed to measure the efficiency of the performance of ANN models. The mean square error and the absolute mean square error were also used to measure the accuracy of the estimation for methods used. The important result obtained in this paper is that the optimal neural network was the Backpropagation (BP) and Recurrent neural networks (RNN) to solve time series, whether linear, semilinear, or non-linear. Besides, the result proved that the inefficiency and inaccuracy (failure) of RBF in solving nonlinear time series. However, RBF shows good efficiency in the case of linear or semi-linear time series only. It overcomes the problem of local minimum. The results showed improvements in the modern methods for time series forecasting.
Lead-acid batteries have been used increasingly in recent years in solar power systems, especially in homes and small businesses, due to their cheapness and advanced development in manufacturing them. However, these batteries have low voltages and low capacities, to increase voltage and capacities, they need to be connected in series and parallel. Whether they are connected in series or parallel, their voltages and capacities must be equal otherwise the quality of service will be degraded. The fact that these different voltages are inherent in their manufacturing, but these unbalanced voltages can be controlled. Using a switched capacitor is a method that was used in many methods for balancing voltages, but their respons
... Show MoreAccurate prediction and optimization of morphological traits in Roselle are essential for enhancing crop productivity and adaptability to diverse environments. In the present study, a machine learning framework was developed using Random Forest and Multi-layer Perceptron algorithms to model and predict key morphological traits, branch number, growth period, boll number, and seed number per plant, based on genotype and planting date. The dataset was generated from a field experiment involving ten Roselle genotypes and five planting dates. Both RF and MLP exhibited robust predictive capabilities; however, RF (R² = 0.84) demonstrated superior performance compared to MLP (R² = 0.80), underscoring its efficacy in capturing the nonlinear genoty
... Show MoreDay after day, Morsek literature 879-1018/1492-1609proves the completion of all literary branches starting from poetry with its different purposes to include prose with its various subjects. In 2016, a complete text of ‘the literature of Morsek journey
Day after day, Morsek literature 879-1018/1492-1609proves the completion of all literary branches starting from poetry with its different purposes to include prose with its various subjects. In 2016, a complete text of ‘the literature of Morsek journeys
The water supply network inside the building is of high importance due to direct contact with the user that must be optimally designed to meet the water needs of users. This work aims to review previous research and scientific theories that deal with the design of water networks inside buildings, from calculating the amount of consumption and the optimal distribution of the network, as well as ways to rationalize the use of water by the consumer. The process of pumping domestic water starts from water treatment plants to be fed to the public distribution networks, then reaching a distribution network inside the building till it is provided to the user. The design of the water supply network inside the building is
... Show MoreIt is no doubt that dialogue is a behavior for human communication. It varies according to the place and occasion that requires it. Dialogues are of two types: positive purposeful and negative non-purposeful. The study aims to shed light on those patterns of dialogues contained in the Quranic stories represented by the characters and events participating in that dialogue activity. To expand the circle of social relations, and in order to make these relationships a success, there are several rules that must be adhered to.For instance, the dialogue should not be tolerant to a personal opinion, or prolonged, or should not deviate from its text. The expression of polite dialogue has been raised in recognition of these dialogue et
... Show MoreVariation orders are an on-going phenomenon in construction and industry projects worldwide, particularly in the province of Sulaimani, where the project's damage from cost and schedule overrun because of variation orders. However, the effect on project costs and time overrun of variation order has yet to be identified. This study evaluates the impact of variation orders on the cost and time off in the Sulaimani governorate. Two hundred twenty-eight projects from various construction sectors built between 2007-2012 were adopted to calculate the contract cost and schedule overruns due to variation orders. Data analysis was applied in the study were descriptive statistics. One-way ANOVA was also applied to determine w
... Show MoreThe research aims to shed light on the possibility of measuring the intellectual capital in the Iraqi insurance company using accounting models, as well as disclosing it in the financial statements of the company, where human capital was measured using the present value factor model for discounted future revenues and the intellectual value-added factor model for measuring structural capital It was also disclosed in the financial statements based on the theory of stakeholders. The research problem lies in the fact that the Iraqi insurance company does not carry out the process of measuring and disclosing the intellectual capital while it is considered an important source for the company’s progress in the labor market recently. T
... Show MoreThis paper study two stratified quantile regression models of the marginal and the conditional varieties. We estimate the quantile functions of these models by using two nonparametric methods of smoothing spline (B-spline) and kernel regression (Nadaraya-Watson). The estimates can be obtained by solve nonparametric quantile regression problem which means minimizing the quantile regression objective functions and using the approach of varying coefficient models. The main goal is discussing the comparison between the estimators of the two nonparametric methods and adopting the best one between them