Preferred Language
Articles
/
bsj-6236
Optimized Artificial Neural network models to time series
...Show More Authors

        Artificial Neural networks (ANN) are powerful and effective tools in time-series applications. The first aim of this paper is to diagnose better and more efficient ANN models (Back Propagation, Radial Basis Function Neural networks (RBF), and Recurrent neural networks) in solving the linear and nonlinear time-series behavior. The second aim is dealing with finding accurate estimators as the convergence sometimes is stack in the local minima. It is one of the problems that can bias the test of the robustness of the ANN in time series forecasting. To determine the best or the optimal ANN models, forecast Skill (SS) employed to measure the efficiency of the performance of ANN models. The mean square error and the absolute mean square error were also used to measure the accuracy of the estimation for methods used. The important result obtained in this paper is that the optimal neural network was the Backpropagation (BP) and Recurrent neural networks (RNN) to solve time series, whether linear, semilinear, or non-linear. Besides, the result proved that the inefficiency and inaccuracy (failure) of RBF in solving nonlinear time series. However, RBF shows good efficiency in the case of linear or semi-linear time series only. It overcomes the problem of local minimum. The results showed improvements in the modern methods for time series forecasting.

Scopus Clarivate Crossref
View Publication Preview PDF
Quick Preview PDF
Publication Date
Fri Oct 14 2016
Journal Name
International Journal For Computational Methods In Engineering Science And Mechanics
Simultaneous determination of time-dependent coefficients and heat source
...Show More Authors

View Publication
Scopus (18)
Crossref (15)
Scopus Crossref
Publication Date
Sun Sep 11 2022
Journal Name
Journal Of Petroleum Research And Studies
Non-Productive Time Reduction during Oil Wells Drilling Operations
...Show More Authors

Often there is no well drilling without problems. The solution lies in managing and evaluating these problems and developing strategies to manage and scale them. Non-productive time (NPT) is one of the main causes of delayed drilling operations. Many events or possibilities can lead to a halt in drilling operations or a marginal decrease in the advancement of drilling, this is called (NPT). Reducing NPT has an important impact on the total expenditure, time and cost are considered one of the most important success factors in the oil industry. In other words, steps must be taken to investigate and eliminate loss of time, that is, unproductive time in the drilling rig in order to save time and cost and reduce wasted time. The data of

... Show More
View Publication
Crossref (1)
Crossref
Publication Date
Sat Jun 30 2012
Journal Name
Iraqi Journal Of Chemical And Petroleum Engineering
Thickening Time and Compressive Strength Correlations for Bentonitic- Class "G" Cement Slurries
...Show More Authors

Empirical equations for estimating thickening time and compressive strength of bentonitic - class "G" cement slurries were derived as a function of water to cement ratio and apparent viscosity (for any ratios). How the presence of such an equations easily extract the thickening time and compressive strength values of the oil field saves time without reference to the untreated control laboratory tests such as pressurized consistometer for thickening time test and Hydraulic Cement Mortars including water bath ( 24 hours ) for compressive strength test those may have more than one day.

View Publication Preview PDF
Publication Date
Sun Dec 28 2025
Journal Name
Journal Of Physical Education
A Study of Actual Training Time Administration in Bedra Specialized Weightlifting Club
...Show More Authors

View Publication
Publication Date
Mon Jan 01 2024
Journal Name
Aims Mathematics
Solving quaternion nonsymmetric algebraic Riccati equations through zeroing neural networks
...Show More Authors

<abstract><p>Many variations of the algebraic Riccati equation (ARE) have been used to study nonlinear system stability in the control domain in great detail. Taking the quaternion nonsymmetric ARE (QNARE) as a generalized version of ARE, the time-varying QNARE (TQNARE) is introduced. This brings us to the main objective of this work: finding the TQNARE solution. The zeroing neural network (ZNN) technique, which has demonstrated a high degree of effectiveness in handling time-varying problems, is used to do this. Specifically, the TQNARE can be solved using the high order ZNN (HZNN) design, which is a member of the family of ZNN models that correlate to hyperpower iterative techniques. As a result, a novel

... Show More
View Publication
Scopus (1)
Crossref (1)
Scopus Clarivate Crossref
Publication Date
Fri Mar 01 2019
Journal Name
Al-khwarizmi Engineering Journal
Implementation of Neural Control for Continuous Stirred Tank Reactor (CSTR)
...Show More Authors

In this paper a dynamic behavior and control of  a jacketed continuous stirred tank reactor (CSTR)  is developed using different control strategies, conventional feedback control (PI and PID), and neural network (NARMA-L2, and NN Predictive) control. The dynamic model for CSTR process is described by a first order lag system with dead time.

The optimum tuning of control parameters are found by two different methods; Frequency Analysis Curve method (Bode diagram) and Process Reaction Curve using the mean of Square Error (MSE) method. It is found that the Process Reaction Curve method is better than the Frequency Analysis Curve method and PID feedback controller is better than PI feedback controller.

The results s

... Show More
View Publication Preview PDF
Publication Date
Fri Apr 01 2022
Journal Name
Telkomnika (telecommunication Computing Electronics And Control)
An adaptive neural control methodology design for dynamics mobile robot
...Show More Authors

View Publication
Scopus (9)
Crossref (6)
Scopus Crossref
Publication Date
Tue Jun 01 2021
Journal Name
2021 Ieee/cvf Conference On Computer Vision And Pattern Recognition Workshops (cvprw)
Alps: Adaptive Quantization of Deep Neural Networks with GeneraLized PositS
...Show More Authors

View Publication
Scopus (13)
Crossref (13)
Scopus Clarivate Crossref
Publication Date
Wed Nov 01 2023
Journal Name
Al-rafidain Journal Of Medical Sciences ( Issn 2789-3219 )
After Introducing Artificial Intelligence, can Pharmacists Still Find a Job?
...Show More Authors

View Publication Preview PDF
Scopus (1)
Crossref (1)
Scopus Crossref
Publication Date
Sun Jan 14 2018
Journal Name
Journal Of Engineering
Second Order Sliding Mode Controller Design for Pneumatic Artificial Muscle
...Show More Authors

In this paper, first and second order sliding mode controllers are designed for a single link robotic arm actuated by two Pneumatic Artificial Muscles (PAMs). A new mathematical model for the arm has been developed based on the model of large scale pneumatic muscle actuator model. Uncertainty in parameters has been presented and tested for the two controllers. The simulation results of the second-order sliding mode controller proves to have a low tracking error and chattering effect as compared to the first order one. The verification has been done by using MATLAB and Simulink software.

 

View Publication Preview PDF