Preferred Language
Articles
/
bsj-6236
Optimized Artificial Neural network models to time series
...Show More Authors

        Artificial Neural networks (ANN) are powerful and effective tools in time-series applications. The first aim of this paper is to diagnose better and more efficient ANN models (Back Propagation, Radial Basis Function Neural networks (RBF), and Recurrent neural networks) in solving the linear and nonlinear time-series behavior. The second aim is dealing with finding accurate estimators as the convergence sometimes is stack in the local minima. It is one of the problems that can bias the test of the robustness of the ANN in time series forecasting. To determine the best or the optimal ANN models, forecast Skill (SS) employed to measure the efficiency of the performance of ANN models. The mean square error and the absolute mean square error were also used to measure the accuracy of the estimation for methods used. The important result obtained in this paper is that the optimal neural network was the Backpropagation (BP) and Recurrent neural networks (RNN) to solve time series, whether linear, semilinear, or non-linear. Besides, the result proved that the inefficiency and inaccuracy (failure) of RBF in solving nonlinear time series. However, RBF shows good efficiency in the case of linear or semi-linear time series only. It overcomes the problem of local minimum. The results showed improvements in the modern methods for time series forecasting.

Scopus Clarivate Crossref
View Publication Preview PDF
Quick Preview PDF
Publication Date
Wed Jun 14 2023
Journal Name
Al-academy
Representations of the event in the drawings of the civilizations of the ancient world (selected models)
...Show More Authors

This research is concerned with studying the representations of the event in the drawings of the ancient civilizations of the world, and the research consists of two axes, the axis of the theoretical framework, which included (the research problem, its aim, its limits, and the definition of its terminology).
The research aims to reveal how the event pattern was formulated by the artist on the surface of his visual achievement, and the limits of the search were spatial in the ancient civilizations of Iraq, Egypt, Greece and Rome, but the limits of the temporal research could not be determined because they were before birth, and objectively:
representations of the event in the civilizations of the ancient world This axis also in

... Show More
View Publication Preview PDF
Crossref
Publication Date
Tue Feb 01 2022
Journal Name
Int. J. Nonlinear Anal. Appl.
Finger Vein Recognition Based on PCA and Fusion Convolutional Neural Network
...Show More Authors

Finger vein recognition and user identification is a relatively recent biometric recognition technology with a broad variety of applications, and biometric authentication is extensively employed in the information age. As one of the most essential authentication technologies available today, finger vein recognition captures our attention owing to its high level of security, dependability, and track record of performance. Embedded convolutional neural networks are based on the early or intermediate fusing of input. In early fusion, pictures are categorized according to their location in the input space. In this study, we employ a highly optimized network and late fusion rather than early fusion to create a Fusion convolutional neural network

... Show More
Publication Date
Fri Apr 28 2023
Journal Name
Mathematical Modelling Of Engineering Problems
Design Optimal Neural Network for Solving Unsteady State Confined Aquifer Problem
...Show More Authors

View Publication Preview PDF
Scopus (7)
Crossref (1)
Scopus Crossref
Publication Date
Fri Dec 01 2023
Journal Name
Political Sciences Journal
¬The Role of the European Union in Conflicts Resolution in the Eastern Neighborhood: Selected Models
...Show More Authors

The launch of the EU’s Eastern Partnership in 2009 intended to signal a new, elevated level of EU engagement with its Eastern neighborhood. Yet there remain several long-simmering and potentially destabilizing conflicts in the region, with which EU engagement thus far has been sporadic at best. The Union’s use of its Common Security and Defense Policy (CSDP) in the region and to help solve these disputes has been particularly ad hoc and inconsistent, wracked by inter-institutional incoherence and undermined by Member States’ inability to agree on a broad strategic vision for engagement with the area.

The three CSDP missions deployed to the region thus far have all suffered from this incoherence to various extents. In particu

... Show More
View Publication Preview PDF
Crossref
Publication Date
Mon Dec 28 2020
Journal Name
International Journal Of Psychosocial Rehabilitation
Predicting the Sporting Achievement in the Pole Vault for Men Using Artificial Neural Networks
...Show More Authors

The physical sports sector in Iraq suffers from the problem of achieving sports achievements in individual and team games in various Asian and international competitions, for many reasons, including the lack of exploitation of modern, accurate and flexible technologies and means, especially in the field of information technology, especially the technology of artificial neural networks. The main goal of this study is to build an intelligent mathematical model to predict sport achievement in pole vaulting for men, the methodology of the research included the use of five variables as inputs to the neural network, which are Avarage of Speed (m/sec in Before distance 05 meters latest and Distance 05 meters latest, The maximum speed achieved in t

... Show More
View Publication Preview PDF
Publication Date
Sat May 01 2021
Journal Name
Journal Of Physics: Conference Series
An Efficient Shrinkage Estimators For Generalized Inverse Rayleigh Distribution Based On Bounded And Series Stress-Strength Models
...Show More Authors
Abstract<p>In this paper, we investigate two stress-strength models (Bounded and Series) in systems reliability based on Generalized Inverse Rayleigh distribution. To obtain some estimates of shrinkage estimators, Bayesian methods under informative and non-informative assumptions are used. For comparison of the presented methods, Monte Carlo simulations based on the Mean squared Error criteria are applied.</p>
View Publication
Scopus (4)
Crossref (2)
Scopus Crossref
Publication Date
Tue Jun 30 2020
Journal Name
Journal Of Economics And Administrative Sciences
Using ARIMA models to forecast the volume of cargo handled in Iraqi ports An applied study in the general company of Iraqi ports
...Show More Authors

Time series is an important statistical method adopted in the analysis of phenomena, practices, and events in all areas during specific time periods and predict future values ​​contribute to give a rough estimate of the status of the study, so the study aimed to adopt the ARIMA models to forecast the volume of cargo handled and achieved in four ports (Umm Qasr Port, Khor Al Zubair Port, Abu Flus Port, and Maqal Port(, Monthly data on the volume of cargo handled for the years (2006-2018) were collected (156) observations. The study found that the most efficient model is ARIMA (1,1,1).

The volume of go

... Show More
View Publication Preview PDF
Crossref
Publication Date
Tue Jun 15 2021
Journal Name
Al-academy
Consistency and Consistency in Contemporary Iraqi Painting - Selected Models-: حسين شاكر قاسم العيداني
...Show More Authors

  The tagged research is concerned with observation and investigating the concepts of consistency and harmony in contemporary Iraqi painting (selected models) in order to reveal the mechanisms and rules of these two concepts in the artistic field and their mechanisms of operation. How reflected tools Consistency and harmony in contemporary Iraqi painting? What is consistency and what are its mechanisms and principles? Is consistency a unit product quality? Are there similarities between consistency and harmony? What is harmony and its principles and rules? As for the second chapter, it included two topics that dealt with the first topic - consistency and harmony between concept and significance, while the second topic meant - histor

... Show More
View Publication Preview PDF
Crossref
Publication Date
Wed Oct 17 2018
Journal Name
Journal Of Economics And Administrative Sciences
Comparison Between the Methods Estimate Nonparametric and Semiparametric Transfer Function Model in Time Series Using Simulation
...Show More Authors

Publication Date
Mon Apr 11 2011
Journal Name
Icgst
Employing Neural Network and Naive Bayesian Classifier in Mining Data for Car Evaluation
...Show More Authors

In data mining, classification is a form of data analysis that can be used to extract models describing important data classes. Two of the well known algorithms used in data mining classification are Backpropagation Neural Network (BNN) and Naïve Bayesian (NB). This paper investigates the performance of these two classification methods using the Car Evaluation dataset. Two models were built for both algorithms and the results were compared. Our experimental results indicated that the BNN classifier yield higher accuracy as compared to the NB classifier but it is less efficient because it is time-consuming and difficult to analyze due to its black-box implementation.