This work aims to detect the associations of C-peptide and the homeostasis model assessment of beta-cells function (HOMA2-B%) with inflammatory biomarkers in pregnant-women in comparison with non-pregnant women. Sera of 28 normal pregnant women at late pregnancy versus 27 matched age non-pregnant women (control), were used to estimate C-peptide, triiodothyronine (T3), and thyroxin (T4) by Enzyme-linked-immunosorbent assay (ELISA), fasting blood sugar (FBS) by automatic analyzer Biolis 24i, hematology-tests by hematology analyzer and the calculation of HOMA2-B% and homeostasis model assessment of insulin sensitivity (HOMA2-S%) by using C-peptide values instead of insulin. The comparisons, correlations, regression analysis tests were performed by the software of statistical package for the social sciences (SPSS). In pregnant women group, HOMA2-B%, T3, T4, white blood cell (WBC), MID cells, granulocytes (GRAN) increased significantly (p-values˂0.05), while C-peptide level raised about 11% compared to control. Lymphocytes, red blood cells (RBC), platelets (PLT) and hemoglobin (HGB) decreased significantly (p-values˂0.05). Lymphocytes predicted both HOMA2-B% and C-peptide level during pregnancy (R2 =0.516, p ˂0.0004; R2=0.31, p ˂0.009 respectively). Prediction of HOMA2-B% and C-peptide levels by lymphocytes account clarifies that the adaptation in beta-cells might be a part of the defense system mechanism of the body against oxidative stress, and this highlights new insight on the proliferation of beta-cells during pregnancy and insulin sensitivity.
The concept of Cech fuzzy soft bi-closure space ( ˇ Cfs bi-csp) ( ˇ U, L1, L2, S) is initiated and studied by the authors in [6]. The notion of pairwise fuzzy soft separated sets in Cfs bi-csp is defined in this study, and various features of ˇ this notion are proved. Then, we introduce and investigate the concept of connectedness in both Cfs bi-csps and its ˇ associated fuzzy soft bitopological spaces utilizing the concept of pairwise fuzzy soft separated sets. Furthermore, the concept of pairwise feebly connected is introduced, and the relationship between pairwise connected and pairwise feebly connected is discussed. Finally, we provide various instances to further explain our findings.
The idea of ech fuzzy soft bi-closure space ( bicsp) is a new one, and its basic features are defined and studied in [1]. In this paper, separation axioms, namely pairwise, , pairwise semi-(respectively, pairwise pseudo and pairwise Uryshon) - fs bicsp's are introduced and studied in both ech fuzzy soft bi-closure space and their induced fuzzy soft bitopological spaces. It is shown that hereditary property is satisfied for , with respect to ech fuzzy soft bi-closure space but for other mentioned types of separations axioms, hereditary property satisfies for closed subspaces of ech fuzzy soft bi-closure space.
Since its invention by the Ancient Romans and later developed during the mid-18th century, the concrete structure and finish, has been considered as the most powerful, practical, economic and constructional material that meets the building’s architectural and aesthetical requirements. By creating unique architectural forms, the pioneer architects used concrete widely to shape up their innovative designs and buildings.
The pre-mixed ultra-high performance concrete which manufactured by Lafarge.
The transparent concrete and cement that allow the light beams to pass through them, introduces remarkable well-lit architectural spaces within the same structural criteria. This product is a recyclable, sustainab
... Show MoreThe COVID-19 pandemic has necessitated new methods for controlling the spread of the virus, and machine learning (ML) holds promise in this regard. Our study aims to explore the latest ML algorithms utilized for COVID-19 prediction, with a focus on their potential to optimize decision-making and resource allocation during peak periods of the pandemic. Our review stands out from others as it concentrates primarily on ML methods for disease prediction.To conduct this scoping review, we performed a Google Scholar literature search using "COVID-19," "prediction," and "machine learning" as keywords, with a custom range from 2020 to 2022. Of the 99 articles that were screened for eligibility, we selected 20 for the final review.Our system
... Show MoreMachine Learning (ML) algorithms are increasingly being utilized in the medical field to manage and diagnose diseases, leading to improved patient treatment and disease management. Several recent studies have found that Covid-19 patients have a higher incidence of blood clots, and understanding the pathological pathways that lead to blood clot formation (thrombogenesis) is critical. Current methods of reporting thrombogenesis-related fluid dynamic metrics for patient-specific anatomies are based on computational fluid dynamics (CFD) analysis, which can take weeks to months for a single patient. In this paper, we propose a ML-based method for rapid thrombogenesis prediction in the carotid artery of Covid-19 patients. Our proposed system aims
... Show MoreBackground: techniques of image analysis have been used extensively to minimize interobserver variation of immunohistochemical scoring, yet; image acquisition procedures are often demanding, expensive and laborious. This study aims to assess the validity of image analysis to predict human observer’s score with a simplified image acquisition technique. Materials and methods: formalin fixed- paraffin embedded tissue sections for ameloblastomas and basal cell carcinomas were immunohistochemically stained with monoclonal antibodies to MMP-2 and MMP-9. The extent of antibody positivity was quantified using Imagej® based application on low power photomicrographs obtained with a conventional camera. Results of the software were employed
... Show MoreThis work represents development and implementation a programmable model for evaluating pumping technique and spectroscopic properties of solid state laser, as well as designing and constructing a suitable software program to simulate this techniques . A study of a new approach for Diode Pumped Solid State Laser systems (DPSSL), to build the optimum path technology and to manufacture a new solid state laser gain medium. From this model the threshold input power, output power optimum transmission, slop efficiency and available power were predicted. different systems configuration of diode pumped solid state laser for side pumping, end pump method using different shape type (rod,slab,disk) three main parameters are (energy transfer efficie
... Show MoreThis article aims to estimate the partially linear model by using two methods, which are the Wavelet and Kernel Smoothers. Simulation experiments are used to study the small sample behavior depending on different functions, sample sizes, and variances. Results explained that the wavelet smoother is the best depending on the mean average squares error criterion for all cases that used.