Preferred Language
Articles
/
bsj-6219
Wireless Propagation Multipaths using Spectral Clustering and Three-Constraint Affinity Matrix Spectral Clustering
...Show More Authors

This study focused on spectral clustering (SC) and three-constraint affinity matrix spectral clustering (3CAM-SC) to determine the number of clusters and the membership of the clusters of the COST 2100 channel model (C2CM) multipath dataset simultaneously. Various multipath clustering approaches solve only the number of clusters without taking into consideration the membership of clusters. The problem of giving only the number of clusters is that there is no assurance that the membership of the multipath clusters is accurate even though the number of clusters is correct. SC and 3CAM-SC aimed to solve this problem by determining the membership of the clusters. The cluster and the cluster count were then computed through the cluster-wise Jaccard index of the membership of the multipaths to their clusters. The multipaths generated by C2CM were transformed using the directional cosine transform (DCT) and the whitening transform (WT). The transformed dataset was clustered using SC and 3CAM-SC. The clustering performance was validated using the Jaccard index by comparing the reference multipath dataset with the calculated multipath clusters. The results show that the effectiveness of SC is similar to the state-of-the-art clustering approaches. However, 3CAM-SC outperforms SC in all channel scenarios. SC can be used in indoor scenarios based on accuracy, while 3CAM-SC is applicable in indoor and semi-urban scenarios. Thus, the clustering approaches can be applied as alternative clustering techniques in the field of channel modeling.

Scopus Clarivate Crossref
View Publication Preview PDF
Quick Preview PDF
Publication Date
Mon Apr 17 2023
Journal Name
Wireless Communications And Mobile Computing
A Double Clustering Approach for Color Image Segmentation
...Show More Authors

One of the significant stages in computer vision is image segmentation which is fundamental for different applications, for example, robot control and military target recognition, as well as image analysis of remote sensing applications. Studies have dealt with the process of improving the classification of all types of data, whether text or audio or images, one of the latest studies in which researchers have worked to build a simple, effective, and high-accuracy model capable of classifying emotions from speech data, while several studies dealt with improving textual grouping. In this study, we seek to improve the classification of image division using a novel approach depending on two methods used to segment the images. The first

... Show More
View Publication
Scopus (3)
Crossref (1)
Scopus Crossref
Publication Date
Sun Apr 23 2017
Journal Name
International Conference Of Reliable Information And Communication Technology
Classification of Arabic Writer Based on Clustering Techniques
...Show More Authors

Arabic text categorization for pattern recognitions is challenging. We propose for the first time a novel holistic method based on clustering for classifying Arabic writer. The categorization is accomplished stage-wise. Firstly, these document images are sectioned into lines, words, and characters. Secondly, their structural and statistical features are obtained from sectioned portions. Thirdly, F-Measure is used to evaluate the performance of the extracted features and their combination in different linkage methods for each distance measures and different numbers of groups. Finally, experiments are conducted on the standard KHATT dataset of Arabic handwritten text comprised of varying samples from 1000 writers. The results in the generatio

... Show More
Scopus (5)
Scopus
Publication Date
Fri Nov 20 2020
Journal Name
Solid State Technology
Comparative Study for Bi-Clustering Algorithms: Historical and Methodological Notes
...Show More Authors

View Publication
Publication Date
Thu May 18 2023
Journal Name
Journal Of Engineering
A Comparative Study of Single-Constraint Routing in Wireless Mesh Networks Using Different Dynamic Programming Algorithms
...Show More Authors

Finding the shortest route in wireless mesh networks is an important aspect. Many techniques are used to solve this problem like dynamic programming, evolutionary algorithms, weighted-sum techniques, and others. In this paper, we use dynamic programming techniques to find the shortest path in wireless mesh networks due to their generality, reduction of complexity and facilitation of numerical computation, simplicity in incorporating constraints, and their onformity to the stochastic nature of some problems. The routing problem is a multi-objective optimization problem with some constraints such as path capacity and end-to-end delay. Single-constraint routing problems and solutions using Dijkstra, Bellman-Ford, and Floyd-Warshall algorith

... Show More
View Publication Preview PDF
Crossref (1)
Crossref
Publication Date
Mon Dec 20 2021
Journal Name
Baghdad Science Journal
Performance Analysis of Propagation in VHF Military Tactical Communication System
...Show More Authors

The main challenge of military tactical communication systems is the accessibility of relevant information on the particular operating environment required for the determination of the waveform's ideal use. The existing propagation model focuses mainly on broadcasting and commercial wireless communication with a highs transceiver antenna that is not suitable for numerous military tactical communication systems. This paper presents a study of the path loss model related to radio propagation profile within the suburban in Kuala Lumpur. The experimental path loss modeling for VHF propagation was collected from various suburban settings for the 30-88 MHz frequency range. This experiment was highly affected by ecological factors and existing

... Show More
View Publication Preview PDF
Scopus (3)
Scopus Clarivate Crossref
Publication Date
Mon Aug 26 2019
Journal Name
Iraqi Journal Of Science
Finding Best Clustering For Big Networks with Minimum Objective Function by Using Probabilistic Tabu Search
...Show More Authors

     Fuzzy C-means (FCM) is a clustering method used for collecting similar data elements within the group according to specific measurements. Tabu is a heuristic algorithm. In this paper, Probabilistic Tabu Search for FCM implemented to find a global clustering based on the minimum value of the Fuzzy objective function. The experiments designed for different networks, and cluster’s number the results show the best performance based on the comparison that is done between the values of the objective function in the case of using standard FCM and Tabu-FCM, for the average of ten runs.

View Publication Preview PDF
Scopus (2)
Crossref (1)
Scopus Crossref
Publication Date
Mon Aug 01 2016
Journal Name
Ieee Transactions On Neural Systems And Rehabilitation Engineering
Transradial Amputee Gesture Classification Using an Optimal Number of sEMG Sensors: An Approach Using ICA Clustering
...Show More Authors

View Publication
Scopus (134)
Crossref (128)
Scopus Clarivate Crossref
Publication Date
Sat Jul 31 2021
Journal Name
Iraqi Journal Of Science
A Parallel Clustering Analysis Based on Hadoop Multi-Node and Apache Mahout
...Show More Authors

     The conventional procedures of clustering algorithms are incapable of overcoming the difficulty of managing and analyzing the rapid growth of generated data from different sources. Using the concept of parallel clustering is one of the robust solutions to this problem. Apache Hadoop architecture is one of the assortment ecosystems that provide the capability to store and process the data in a distributed and parallel fashion. In this paper, a parallel model is designed to process the k-means clustering algorithm in the Apache Hadoop ecosystem by connecting three nodes, one is for server (name) nodes and the other two are for clients (data) nodes. The aim is to speed up the time of managing the massive sc

... Show More
View Publication Preview PDF
Scopus (3)
Crossref (1)
Scopus Crossref
Publication Date
Fri Dec 31 2021
Journal Name
Iraqi Journal Of Market Research And Consumer Protection
DETERMINATION OF CEFALAXIN IN PHARMACEUTICAL PREPARATION BYMOLECULARY IMPRENTED POLYMER IN PVC MATRIX MEMBRANE: DETERMINATION OF CEFALAXIN IN PHARMACEUTICAL PREPARATION BYMOLECULARY IMPRENTED POLYMER IN PVC MATRIX MEMBRANE
...Show More Authors

This current study was built on creating four electrodes based on molecularly imprinted polymers (MIPs). As the template using Cefalexin (CFX), 1-vinyl imidazole (VIZ) and vinyl acetate (VA) as monomer, and N, N-methylene bis acrylamide (MBAA) as cross-linkers and benzoyl peroxide as the initiator, two MIPs were prepared. The same composition was used in non-impressed polymers (NIPs) preparation, but without the template (Cefalexin). For the membranes preparation, numerous plasticizers, such as tri-oly phosphate (TOP) and di-octyl phthalate (DOP), were used in the PVC matrix, slop, detection limit, lifetime, and linearity range of CFX-MIPs electrodes are characteristics &nb

... Show More
View Publication Preview PDF
Publication Date
Thu Apr 28 2022
Journal Name
Iraqi Journal Of Science
An Evolutionary Bi-clustering Algorithm for Community Mining in Complex Networks
...Show More Authors

A network (or formally a graph) can be described by a set of nodes and a set of edges connecting these nodes. Networks model many real-world phenomena in various research domains, such as biology, engineering and sociology. Community mining is discovering the groups in a network where individuals group of membership are not explicitly given. Detecting natural divisions in such complex networks is proved to be extremely NP-hard problem that recently enjoyed a considerable interest. Among the proposed methods, the field of evolutionary algorithms (EAs) takes a remarkable interest. To this end, the aim of this paper is to present the general statement of community detection problem in social networks. Then, it visits the problem as an optim

... Show More
View Publication Preview PDF