Television white spaces (TVWSs) refer to the unused part of the spectrum under the very high frequency (VHF) and ultra-high frequency (UHF) bands. TVWS are frequencies under licenced primary users (PUs) that are not being used and are available for secondary users (SUs). There are several ways of implementing TVWS in communications, one of which is the use of TVWS database (TVWSDB). The primary purpose of TVWSDB is to protect PUs from interference with SUs. There are several geolocation databases available for this purpose. However, it is unclear if those databases have the prediction feature that gives TVWSDB the capability of decreasing the number of inquiries from SUs. With this in mind, the authors present a reinforcement learning-based TVWSDB. Reinforcement learning (RL) is a machine learning technique that focuses on what has been done based on mapping situations to actions to obtain the highest reward. The learning process was conducted by trying out the actions to gain the reward instead of being told what to do. The actions may directly affect the rewards and future rewards. Based on the results, this algorithm effectively searched the most optimal channel for the SUs in query with the minimum search duration. This paper presents the advantage of using a machine learning approach in TVWSDB with an accurate and faster-searching capability for the available TVWS channels intended for SUs.
The COVID-19 pandemic has necessitated new methods for controlling the spread of the virus, and machine learning (ML) holds promise in this regard. Our study aims to explore the latest ML algorithms utilized for COVID-19 prediction, with a focus on their potential to optimize decision-making and resource allocation during peak periods of the pandemic. Our review stands out from others as it concentrates primarily on ML methods for disease prediction.To conduct this scoping review, we performed a Google Scholar literature search using "COVID-19," "prediction," and "machine learning" as keywords, with a custom range from 2020 to 2022. Of the 99 articles that were screened for eligibility, we selected 20 for the final review.Our system
... Show MoreGeneral Background: Deep image matting is a fundamental task in computer vision, enabling precise foreground extraction from complex backgrounds, with applications in augmented reality, computer graphics, and video processing. Specific Background: Despite advancements in deep learning-based methods, preserving fine details such as hair and transparency remains a challenge. Knowledge Gap: Existing approaches struggle with accuracy and efficiency, necessitating novel techniques to enhance matting precision. Aims: This study integrates deep learning with fusion techniques to improve alpha matte estimation, proposing a lightweight U-Net model incorporating color-space fusion and preprocessing. Results: Experiments using the AdobeComposition-1k
... Show MoreIn this study, an improved process was proposed for the synthesis of structure-controlled Cu2O nanoparticles, using a simplified wet chemical method at room temperature. A chemical solution route was established to synthesize Cu2O crystals with various sizes and morphologies. The structure, morphology, and optical properties of Cu2O nanoparticles were analyzed by X-ray diffraction, SEM (scanning electron microscope), and UV-Vis spectroscopy. By adjusting the aqueous mixture solutions of NaOH and NH2OH•HCl, the synthesis of Cu2O crystals with different morphology and size could be realized. Strangely, it was found that the change in the ratio of de-ionized water and NaOH aqueous solution led to the synthesis of Cu2O crystals of differen
... Show MoreGiven the importance of possessing the digital competence (DC) required by the technological age, whether for teachers or students and even communities and governments, educational institutions in most countries have sought to benefit from modern technologies brought about by the technological revolution in developing learning and teaching and using modern technologies in providing educational services to learners. Since university students will have the doors to work opened in all fields, the research aims to know their level of DC in artificial intelligence (AI) applications and systems utilizing machine learning (ML) techniques. The descriptive approach was used, as the research community consisted of students from the University
... Show MoreThe majority of Arab EFL (English as a Foreign Language) learners struggle with speaking English fluency. Iraqi students struggle to speak English confidently due to mispronunciation, grammatical errors, short and long pauses while speaking or feeling confused in normal conversations. Collaborative learning is crucial to enhance student’s speaking skills in the long run. This study aims to state the importance of collaborative learning as a teaching method to EFL learners in the meantime. In this quantitative and qualitative study, specific focus is taken on some of Barros’s views of collaborative learning as a teamwork and some of Pattanpichet’s speaking achievements under four categories: academic benefits, social benefits,
... Show MoreIn this work, we construct the projectively distinct (k, n)-arcs in PG (3, 4) over Galois field GF (4), where k 5, and we found that the complete (k, n)-arcs, where 3 n 21, moreover we prove geometrically that the maximum complete (k, n)-arc in PG (3, 4) is (85, 21)-arc. A (k, n)-arcs is a set of k points no n+ 1 of which are collinear. A (k, n)-arcs is complete if it is not contained in a (k+ 1, n)-arcs
Dust storms are typical in arid and semi-arid regions such as the Middle East; the frequency and severity of dust storms have grown dramatically in Iraq in recent years. This paper identifies the dust storm sources in Iraq using remotely sensed data from Meteosat-spinning enhanced visible and infrared imager (SEVIRI) bands. Extracted combined satellite images and simulated frontal dust storm trajectories, using the Hybrid Single Particle Lagrangian Integrated Trajectory (HYSPLIT) model, are used to identify the most influential sources in the Middle East and Iraq. Out of 132 dust storms in Iraq during 2020–2023, the most frequent occurred in the spring and summer. A dust source frequency percentage map (DSFPM) is generated using ArcGIS so
... Show MoreSocial interaction is the platform that enables people to connect and practice language. Active listening stimulates them to understand the language they are speaking. The problem of the study highlights that less attention to listening among speaking, reading, and writing skills causes the weakness of collaborative learning. This paper contributes to characterizing the effectiveness of collaborative learning in developing learner’s listening skills. It aims to underscore the role of target language learners as members of the learning groups and of the teacher in the collaborative learning process. 130 Iraqi EFL teachers from different colleges at the University of Baghdad participated in this study. The scores in the statistical data wer
... Show More
The research problem lies in the lack of accurate scientific perceptions concerning the reality of the communicator and the factors influencing his job. The research is aimed at introducing the communicator in the university press, clarifying the obstacles facing him, and uncovering the level of his job satisfaction and his visions of developing his work. The researcher adopted the survey method in the collection, analysis, and interpretation of the data using a questionnaire. A set of results and conclusions has been reached, most importantly are:
*The communicator performs multiple missions including writing, editing, and collecting info |