Television white spaces (TVWSs) refer to the unused part of the spectrum under the very high frequency (VHF) and ultra-high frequency (UHF) bands. TVWS are frequencies under licenced primary users (PUs) that are not being used and are available for secondary users (SUs). There are several ways of implementing TVWS in communications, one of which is the use of TVWS database (TVWSDB). The primary purpose of TVWSDB is to protect PUs from interference with SUs. There are several geolocation databases available for this purpose. However, it is unclear if those databases have the prediction feature that gives TVWSDB the capability of decreasing the number of inquiries from SUs. With this in mind, the authors present a reinforcement learning-based TVWSDB. Reinforcement learning (RL) is a machine learning technique that focuses on what has been done based on mapping situations to actions to obtain the highest reward. The learning process was conducted by trying out the actions to gain the reward instead of being told what to do. The actions may directly affect the rewards and future rewards. Based on the results, this algorithm effectively searched the most optimal channel for the SUs in query with the minimum search duration. This paper presents the advantage of using a machine learning approach in TVWSDB with an accurate and faster-searching capability for the available TVWS channels intended for SUs.
The need to create the optimal water quality management process has motivated researchers to pursue prediction modeling development. One of the widely important forecasting models is the sessional autoregressive integrated moving average (SARIMA) model. In the present study, a SARIMA model was developed in R software to fit a time series data of monthly fluoride content collected from six stations on Tigris River for the period from 2004 to 2014. The adequate SARIMA model that has the least Akaike's information criterion (AIC) and mean squared error (MSE) was found to be SARIMA (2, 0, 0) (0,1,1). The model parameters were identified and diagnosed to derive the forecasting equations at each selected location. The correlat
... Show MoreAbstract Software-Defined Networking (commonly referred to as SDN) is a newer paradigm that develops the concept of a software-driven network by separating data and control planes. It can handle the traditional network problems. However, this excellent architecture is subjected to various security threats. One of these issues is the distributed denial of service (DDoS) attack, which is difficult to contain in this kind of software-based network. Several security solutions have been proposed recently to secure SDN against DDoS attacks. This paper aims to analyze and discuss machine learning-based systems for SDN security networks from DDoS attack. The results have indicated that the algorithms for machine learning can be used to detect DDoS
... Show MoreThis study aims to develop a recommendation engine methodology to enhance the model’s effectiveness and efficiency. The proposed model is commonly used to assign or propose a limited number of developers with the required skills and expertise to address and resolve a bug report. Managing collections within bug repositories is the responsibility of software engineers in addressing specific defects. Identifying the optimal allocation of personnel to activities is challenging when dealing with software defects, which necessitates a substantial workforce of developers. Analyzing new scientific methodologies to enhance comprehension of the results is the purpose of this analysis. Additionally, developer priorities were discussed, especially th
... Show MoreThis study intends to examine the efficiency of student-centered learning (SCL) through Google classroom in enhancing the readiness of fourth stage females’ pre-service teachers. The research employs a quasi-experimental design with a control and experimental group to compare the teaching readiness of participants before and after the intervention. The participants were 30 of fourth stage students at the University of Baghdad - College of Education for Women/the department of English and data were collected through observation checklist to assess their teaching experience and questionnaires to assess their perceptions towards using Google Classroom. Two sections were selected, C as a control group and D as the experimental one each with (
... Show MoreArtificial intelligence (AI) is entering many fields of life nowadays. One of these fields is biometric authentication. Palm print recognition is considered a fundamental aspect of biometric identification systems due to the inherent stability, reliability, and uniqueness of palm print features, coupled with their non-invasive nature. In this paper, we develop an approach to identify individuals from palm print image recognition using Orange software in which a hybrid of AI methods: Deep Learning (DL) and traditional Machine Learning (ML) methods are used to enhance the overall performance metrics. The system comprises of three stages: pre-processing, feature extraction, and feature classification or matching. The SqueezeNet deep le
... Show MoreWith its rapid spread, the coronavirus infection shocked the world and had a huge effect on billions of peoples' lives. The problem is to find a safe method to diagnose the infections with fewer casualties. It has been shown that X-Ray images are an important method for the identification, quantification, and monitoring of diseases. Deep learning algorithms can be utilized to help analyze potentially huge numbers of X-Ray examinations. This research conducted a retrospective multi-test analysis system to detect suspicious COVID-19 performance, and use of chest X-Ray features to assess the progress of the illness in each patient, resulting in a "corona score." where the results were satisfactory compared to the benchmarked techniques. T
... Show MoreAdverse drug reactions (ADR) are important information for verifying the view of the patient on a particular drug. Regular user comments and reviews have been considered during the data collection process to extract ADR mentions, when the user reported a side effect after taking a specific medication. In the literature, most researchers focused on machine learning techniques to detect ADR. These methods train the classification model using annotated medical review data. Yet, there are still many challenging issues that face ADR extraction, especially the accuracy of detection. The main aim of this study is to propose LSA with ANN classifiers for ADR detection. The findings show the effectiveness of utilizing LSA with ANN in extracting AD
... Show MoreThe research aims to evaluate the selected projects from the water Department of Baghdad, according to a standard for total quality management and to achieve this goal , adopted the case study method to get to know how close or turn away those projects in the management of Standard Malcolm Baldrige Award for Excellence in Quality Management its comprehensive one scales the world's most famous in this area , in order to draw a general framework to evaluate how project management can benefit from this approach to modern management , input from the entrances of the comprehensive management reform and development.
Be standard Malcolm Baldrige Award of several elements: - leadership , strategic planning , foc
... Show MoreInterface evaluation has been the subject of extensive study and research in human-computer interaction (HCI). It is a crucial tool for promoting the idea that user engagement with computers should resemble casual conversations and interactions between individuals, according to specialists in the field. Researchers in the HCI field initially focused on making various computer interfaces more usable, thus improving the user experience. This study's objectives were to evaluate and enhance the user interface of the University of Baghdad's implementation of an online academic management system using the effectiveness, time-based efficiency, and satisfaction rates that comply with the task questionnaire process. We made a variety of interfaces f
... Show MorePurpose: The research aims to build an integrated knowledge framework for the basic research topic. The spirituality of the workplace is through access to the most important scientific proposals on these topics. In management thought framing, the knowledge within them in a serious attempt is to provide the appropriate answers about the intellectual dilemma of research by diagnosing the nature of the relationship with the influential elements and its historical development . Methodology: The study is relied on the analytical survey method. The research sample targeted (88) managers in the center of the Iraqi Ministry of Health exclusively from the researched senior leaders (general manager, assistant general manager, and head of department),
... Show More