Television white spaces (TVWSs) refer to the unused part of the spectrum under the very high frequency (VHF) and ultra-high frequency (UHF) bands. TVWS are frequencies under licenced primary users (PUs) that are not being used and are available for secondary users (SUs). There are several ways of implementing TVWS in communications, one of which is the use of TVWS database (TVWSDB). The primary purpose of TVWSDB is to protect PUs from interference with SUs. There are several geolocation databases available for this purpose. However, it is unclear if those databases have the prediction feature that gives TVWSDB the capability of decreasing the number of inquiries from SUs. With this in mind, the authors present a reinforcement learning-based TVWSDB. Reinforcement learning (RL) is a machine learning technique that focuses on what has been done based on mapping situations to actions to obtain the highest reward. The learning process was conducted by trying out the actions to gain the reward instead of being told what to do. The actions may directly affect the rewards and future rewards. Based on the results, this algorithm effectively searched the most optimal channel for the SUs in query with the minimum search duration. This paper presents the advantage of using a machine learning approach in TVWSDB with an accurate and faster-searching capability for the available TVWS channels intended for SUs.
This paper presents a new design of a nonlinear multi-input multi-output PID neural controller of the active brake steering force and the active front steering angle for a 2-DOF vehicle model based on modified Elman recurrent neural. The goal of this work is to achieve the stability and to improve the vehicle dynamic’s performance through achieving the desired yaw rate and reducing the lateral velocity of the vehicle in a minimum time period for preventing the vehicle from slipping out the road curvature by using two active control actions: the front steering angle and the brake steering force. Bacterial forging optimization algorithm is used to adjust the parameters weights of the proposed controller. Simulation resul
... Show MoreIn this paper, a cognitive system based on a nonlinear neural controller and intelligent algorithm that will guide an autonomous mobile robot during continuous path-tracking and navigate over solid obstacles with avoidance was proposed. The goal of the proposed structure is to plan and track the reference path equation for the autonomous mobile robot in the mining environment to avoid the obstacles and reach to the target position by using intelligent optimization algorithms. Particle Swarm Optimization (PSO) and Artificial Bee Colony (ABC) Algorithms are used to finding the solutions of the mobile robot navigation problems in the mine by searching the optimal paths and finding the reference path equation of the optimal
... Show MoreIn this paper, a miniaturized 2 × 2 electro-optic plasmonic Mach– Zehnder switch (MZS) based on metal–polymer–silicon hybrid waveguide is presented. Adiabatic tapers are designed to couple the light between the plasmonic phase shifter, implemented in each of the MZS arms, and the 3-dB input/output directional couplers. For 6 µm-long hybrid plasmonic waveguide supported by JRD1 polymer (r33= 390 pm/V), a π-phase shift voltage of 2 V is obtained. The switch is designed for 1550 nm operation wavelength using COMSOL software and characterizes by 2.3 dB insertion loss, 9.9 fJ/bit power consumption, and 640 GHz operation bandwidth
Background: As a multifactorial disorder, temporomandibular joint (TMD) is difficult to diagnose, and multiple factors affect the joint and cause the temporomandibular disorder. Standardization of clinical diagnosis of TMD should be used to reach a definite clinical diagnosis; the condylar bone may degenerate in accordance with these disorders. Aims: Evaluate the correlation between the clinical diagnosis and degenerative condylar change (flattening, sclerosis, erosion, and osteophyte). Materials and Methods: A prospective study with a study group of 97 TMD patients (total of 194 joints) aged 20 to 50. Patients were sent to cone beam computed tomography (CBCT) to assess the degenerative condylar change. Results: No association was found bet
... Show MoreThe effect of internal acoustic excitation on the leading-edge, separated boundary layers and the aerodynamic performance of NACA23015 cross section airfoil are examined as a function of excitation location with ranging frequency range (50-400) Hz of the introduced acoustic. Tests are separately conducted in two sections, open type wind tunnels at the Reynolds number of 3.3x105 for measurement at angle of attack (0, 3, 6, 9 &12) deg. and 3x104 for the visualization at angle of attack (12) deg. based on the airfoil chord. Results indicated that the excitation frequency and the excitation location are the key parameters to alter the flow properties and thus to improve the aerodynamic performance. The most effective excitation frequency
... Show More