Renewable energy technology is growing fast especially photovoltaic (PV) system to move the conventional electricity generation and distribution towards smart grid. However, similar to monthly electricity bill, the PV energy producers can only monitor their energy PV generation once a month. Any malfuntion in PV system components may reduce the performance of the system without notice. Thus, developing a real-time monitoring system of PV production is very crucial for early detection. In addition, electricity consumption is also important to be monitored more frequently to increase energy savings awareness among consumers. Hardware based Internet-of-Thing (IoT) monitoring and control system is widely used. However, the implementation of the actual smart grid system is high in cost. Thus, simulation and modelling of the system is important to see the capability of the actual system before being employed. Since the smart grid and its components are usually modeled using MATLAB/Simulink, the communication between MATLAB/Simulink, IoT platform such as ThingSpeak and mobile application is crucial to be explored to gain a better understanding of the features of the smart grid. To achieve the objectives, there are five main steps which are simulation of grid-connected photovoltaic (PV) system to generate data to be monitored and controlled using HOMER software, then, development of monitoring on ThingSpeak and mobile application using MIT App Inventor 2. Next, the control system is developed on mobile application and the communication on how data are transferred between all the softwares are set up. The results show that all the seletected parameters can be monitored in real-time successfully. The developed mobile application can be used to control the MATLAB/Simulink in two modes. During automatic mode, ThingSpeak controls the MATLAB/Simulink by giving a zero signal (OFF) if load demand is less than the power generated by PV and a one signal (ON) if the load demand is greater than PV power. During manual mode, consumer can send ON or OFF signal to MATLAB/Simulink via the mobile application unconditionally. It is hoped that the proposed system will bring many benefits in modeling a complete smart grid system in MATLAB/Simulink.
The effect of superficial gas velocity within the range 0.01-0.164 m/s on gas holdup (overall, riser and down comer), volumetric oxygen mass transfer coefficient, liquid circulation velocity was studied in an internal loop concentric tubes airlift reactor (working volume 45 liters). It was shown that as the usg increases the gas holdup and also the liquid circulation velocity increase. Also it was found that increasing superficial gas velocity lead to increase the interfacial area that increases the overall oxygen mass transfer coefficient. The hydrodynamic experimental results were modeled with the available equations in the literature. The predicted data gave an acceptable accuracy with the empirical data.
The final
... Show MoreThis paper presents a fuzzy logic controller for a two-tank level control system, which is a process with a dead time. The fuzzy controller is a proportional-integral (PI-like) fuzzy controller which is suitable for steady state behavior of the system. Transient behavior of the system was improved without the need for a derivative action by suitable change in the rule base of the controller. Simulation results showed the step response of the two-tank level control system when this controller was used to control this plant and the effect of the dead time on the response of the system.
There is a relationship between the sizes of urban centers and regional
development, concerning the role that these centers are playing in
developmental process.
The research assume that the urban system in the governorate, has
been affected by the external environment due to the religious dominance of
Kerbla city.
The research is composed of three sections, the first is a theoretical
background, which focus upon the general directions of the models and
theories that have a relationship with the subject. The second is a practical
part aims at determination the characteristics of the sizes of the cities in the
governorate. Depending upon of previous part, i.e., the practical part section three deals with
Recently, the theory of Complex Networks gives a modern insight into a variety of applications in our life. Complex Networks are used to form complex phenomena into graph-based models that include nodes and edges connecting them. This representation can be analyzed by using network metrics such as node degree, clustering coefficient, path length, closeness, betweenness, density, and diameter, to mention a few. The topology of the complex interconnections of power grids is considered one of the challenges that can be faced in terms of understanding and analyzing them. Therefore, some countries use Complex Networks concepts to model their power grid networks. In this work, the Iraqi Power Grid network (IPG) has been modeled, visua
... Show MoreSimulation of free convection heat transfer in a square enclosure induced by heated thin plate is represented numerically. All the enclosure walls have constant temperature lower than the plate’s temperature. The flow is assumed to be two-dimensional. The discretized equations were solved stream function, vorticity, and energy equations by finite difference method using explicit technique and Successive Over- Relaxation method. The study was performed for different values of Rayleigh number ranging from 103 to 105 for different angle position of heated thin plate(0°, 45°, 90°). Air was chosen as a working fluid (Pr = 0.71). Aspect ratio of center of plate to the parallel left wall A2
... Show MoreIn this work laser detection and tracking system (LDTS) is designed and implemented using a fuzzy logic controller (FLC). A 5 mW He-Ne laser system and an array of nine PN photodiodes are used in the detection system. The FLC is simulated using MATLAB package and the result is stored in a lock up table to use it in the real time operation of the system. The results give a good system response in the target detection and tracking in the real time operation.
The ejector refrigeration system is a desirable choice to reduce energy consumption. A Computational Fluid Dynamics CFD simulation using the ANSYS package was performed to investigate the flow inside the ejector and determine the performance of a small-scale steam ejector. The experimental results showed that at the nozzle throat diameter of 2.6 mm and the evaporator temperature of 10oC, increasing boiler temperature from 110oC to 140oC decreases the entrainment ratio by 66.25%. At the boiler temperature of 120oC, increasing the evaporator temperature from 7.5 to 15 oC increases the entrainment ratio by 65.57%. While at the boiler temperature of 120oC and
... Show MoreSo I present in the hands of the honorable reader what God Almighty has made easy for me in terms of what I dealt with in the rule (the principle of permissive things) and what branches from it and what is related to it.
This research was divided into an introduction, a preface, three demands, and a conclusion.
The preamble is to explain the meaning of the rule in language and terminology and the definition of the legal rule and what is related to it. The first requirement is to explain the rule that we have in our hands and the words related to its text - and is it a fundamentalist or jurisprudential rule? .
As for the second requirement - in the difference of scholars and their opinions in whether the origin of things is permi