Homomorphic encryption became popular and powerful cryptographic primitive for various cloud computing applications. In the recent decades several developments has been made. Few schemes based on coding theory have been proposed but none of them support unlimited operations with security. We propose a modified Reed-Muller Code based symmetric key fully homomorphic encryption to improve its security by using message expansion technique. Message expansion with prepended random fixed length string provides one-to-many mapping between message and codeword, thus one-to many mapping between plaintext and ciphertext. The proposed scheme supports both (MOD 2) additive and multiplication operations unlimitedly. We make an effort to prove the security of the scheme under indistinguishability under chosen-plaintext attack (IND-CPA) through a game-based security proof. The security proof gives a mathematical analysis and its complexity of hardness. Also, it presents security analysis against all the known attacks with respect to the message expansion and homomorphic operations.
significant bits either in the spatial domain or frequency domain sequentially or pseudo
randomly through the cover media (Based on this fact) statistical Steganalysis use different
techniques to detect the hidden message, A proposed method is suggested of a stenographic
scheme a hidden message is embedded through the second least significant bits in the
frequency domain of the cover media to avoid detection of the hidden message through the
known statistical Steganalysis techniques.
Removal of heavy metals from waste water has received a great deal of attention. The compare Cr
(VI) adsorption characteristics removing from wastewater by using thermally modified and non-modified
eggshells were examined
This work aims to develop a secure lightweight cipher algorithm for constrained devices. A secure communication among constrained devices is a critical issue during the data transmission from the client to the server devices. Lightweight cipher algorithms are defined as a secure solution for constrained devices that require low computational functions and small memory. In contrast, most lightweight algorithms suffer from the trade-off between complexity and speed in order to produce robust cipher algorithm. The PRESENT cipher has been successfully experimented on as a lightweight cryptography algorithm, which transcends other ciphers in terms of its computational processing that required low complexity operations. The mathematical model of
... Show MoreA Multiple System Biometric System Based on ECG Data
The main topic of this study is central around the independence of Jordanian central bank and the extent of the effectiveness at the bank in leading the monetary policy without interferences or pressures from side of the government. the degree of independence of Jordanian central bank was based on the following based hypothesis following ,there is relationship between the independence of the central bank and the legislative and economical indices. the most important recommendations are degree of independence of the Jordan central bank 43.5% is a good one, but it possible to reach a higher degree than this one by to making some modification on the Jordanian central bank law and by the central bank should be more rigid
... Show MoreRecently a large number of extensive studies have amassed that describe the removal of dyes from water and wastewater using natural adsorbents and modified materials. Methyl orange dye is found in wastewater streams from various industries that include textiles, plastics, printing and paper among other sources. This article reviews methyl orange adsorption onto natural and modified materials. Despite many techniques available, adsorption stands out for efficient water and wastewater treatment for its ease of operation, flexibility and large-scale removal of colorants. It also has a significant potential for regeneration recovery and recycling of adsorbents in comparison to other water treatment methods. The adsorbents described herein were
... Show MoreObjective: The goal of this research is to load Doxorubicin (DOX) on silver nanoparticles coupled with folic acid and test their anticancer properties against breast cancer. Methods: Chitosan-Capped silver nanoparticles (CS-AgNPs) were manufactured and loaded with folic acid as well as an anticancer drug, Doxorubicin, to form CS-AgNPs-DOX-FA conjugate. AFM, FTIR, and SEM techniques were used to characterize the samples. The produced multifunctional nano-formulation served as an intrinsic drug delivery system, allowing for effective loading and targeting of chemotherapeutics on the Breast cancer (AMJ 13) cell line. Flowcytometry was used to assess therapy efficacy by measuring apoptotic induction. Results: DOX and CS-Ag
... Show More