Some of the main challenges in developing an effective network-based intrusion detection system (IDS) include analyzing large network traffic volumes and realizing the decision boundaries between normal and abnormal behaviors. Deploying feature selection together with efficient classifiers in the detection system can overcome these problems. Feature selection finds the most relevant features, thus reduces the dimensionality and complexity to analyze the network traffic. Moreover, using the most relevant features to build the predictive model, reduces the complexity of the developed model, thus reducing the building classifier model time and consequently improves the detection performance. In this study, two different sets of selected features have been adopted to train four machine-learning based classifiers. The two sets of selected features are based on Genetic Algorithm (GA) and Particle Swarm Optimization (PSO) approach respectively. These evolutionary-based algorithms are known to be effective in solving optimization problems. The classifiers used in this study are Naïve Bayes, k-Nearest Neighbor, Decision Tree and Support Vector Machine that have been trained and tested using the NSL-KDD dataset. The performance of the abovementioned classifiers using different features values was evaluated. The experimental results indicate that the detection accuracy improves by approximately 1.55% when implemented using the PSO-based selected features than that of using GA-based selected features. The Decision Tree classifier that was trained with PSO-based selected features outperformed other classifiers with accuracy, precision, recall, and f-score result of 99.38%, 99.36%, 99.32%, and 99.34% respectively. The results show that using optimal features coupling with a good classifier in a detection system able to reduce the classifier model building time, reduce the computational burden to analyze data, and consequently attain high detection rate.
Researchers need to understand the differences between parametric and nonparametric regression models and how they work with available information about the relationship between response and explanatory variables and the distribution of random errors. This paper proposes a new nonparametric regression function for the kernel and employs it with the Nadaraya-Watson kernel estimator method and the Gaussian kernel function. The proposed kernel function (AMS) is then compared to the Gaussian kernel and the traditional parametric method, the ordinary least squares method (OLS). The objective of this study is to examine the effectiveness of nonparametric regression and identify the best-performing model when employing the Nadaraya-Watson
... Show MoreThe performance evaluation process requires a set of criteria and for the purpose of measuring the level of performance achieved by the Unit and the actual level of development of its activities, and in view of the changes and of rapid and continuous variables surrounding the Performance is a reflection of the unit's ability to achieve its objectives, as these units are designed to achieve the objectives of exploiting a range of economic resources available to it, and the performance evaluation process is a form of censorship, focusing on the analysis of the results obtained from the achievement All its activities with a view to determining the extent to which the Unit has achieved its objectives using the resources available to it and h
... Show MoreIn this study, a genetic algorithm (GA) is used to detect damage in curved beam model, stiffness as well as mass matrices of the curved beam elements is formulated using Hamilton's principle. Each node of the curved beam element possesses seven degrees of freedom including the warping degree of freedom. The curved beam element had been derived based on the Kang and Yoo’s thin-walled curved beam theory. The identification of damage is formulated as an optimization problem, binary and continuous genetic algorithms
(BGA, CGA) are used to detect and locate the damage using two objective functions (change in natural frequencies, Modal Assurance Criterion MAC). The results show the objective function based on change in natural frequency i
The research aims to analyze and evaluate the urban land use according to the needs of the current and future population by adopting the planning criteria for the holy city of Karbala. In the theoretical side, we discussed the most important concepts of urban land use planning. In the practical aspect of the study, field surveys were conducted to obtain the required information. Using the GIS program, the land uses were planned and executed, Analysis By comparing the per capita use of urban land with criteria and the production of maps.
The main findings of the study are that there is a large deficit in meeting some of the needs of the urban land uses and the basic services of the city. The research recommended that the needs of
... Show Morethe researchers Sought to determine the impact of the customer contact (Within a client contact there are two times, first is the total time required to create a service and within it there is contact time while the second time is the time of client contact ؛ where means a time that records the physical presence of the customer during the process of service) on operations performance by concentrate attention on the cost (labor productivity) and quality (patient ratio to the doctor) and speed (cycle time) and flexibility (the flexibility range) , as well as ruling out variable of innovation because of impossibility to measure this variable in the Specialty Center for Dental in al-alwia due to the center is lacking of mechanisms t
... Show MoreAn attempt was made to evaluate the PV performance of one-axis daily tracking and fixed system for Baghdad, Iraq. Two experimental simulations were conducted on a PV module for that purpose. Measurements included incident solar radiation, load voltage and load current. The first experiment was carried out for six months of winter half of year to simulate the one-axis daily tracking. The azimuth angle was due south while the tilt angle was being set to optimum according to each day of simulation. The second experiment was done at one day to simulate the PV module of fixed angles. It is found that there is a significant power gain of 29.6% for the tracking system in respect to the fixed one. The one-axis daily tracking was much more effect
... Show MoreIn this research, a study is introduced on the effect of several environmental factors on the performance of an already constructed quality inspection system, which was designed using a transfer learning approach based on convolutional neural networks. The system comprised two sets of layers, transferred layers set from an already trained model (DenseNet121) and a custom classification layers set. It was designed to discriminate between damaged and undamaged helical gears according to the configuration of the gear regardless to its dimensions, and the model showed good performance discriminating between the two products at ideal conditions of high-resolution images. So, this study aimed at testing the system performance at poo
... Show MoreThe availability of different processing levels for satellite images makes it important to measure their suitability for classification tasks. This study investigates the impact of the Landsat data processing level on the accuracy of land cover classification using a support vector machine (SVM) classifier. The classification accuracy values of Landsat 8 (LS8) and Landsat 9 (LS9) data at different processing levels vary notably. For LS9, Collection 2 Level 2 (C2L2) achieved the highest accuracy of (86.55%) with the polynomial kernel of the SVM classifier, surpassing the Fast Line-of-Sight Atmospheric Analysis of Spectral Hypercubes (FLAASH) at (85.31%) and Collection 2 Level 1 (C2L1) at (84.93%). The LS8 data exhibits similar behavior. Conv
... Show MoreAutonomous systems are these systems which power themselves from the available ambient energies in addition to their duties. In the next few years, autonomous systems will pervade society and they will find their ways into different applications related to health, security, comfort and entertainment. Piezoelectric harvesters are possible energy converters which can be used to convert the available ambient vibration energy into electrical energy. In this contribution, an energy harvesting cantilever array with magnetic tuning including three piezoelectric bimorphs is investigated theoretically and experimentally. Other than harvester designs proposed before, this array is easy to manufacture and insensitive to manufacturi
... Show MoreAt thermal energies near stellar conditions, nuclear reactions are sensitive to resonance strengths of the nuclear reaction cross-section. In this paper, the resonance strengths of nuclear reaction were evaluated numerically by means of nuclear reaction rate calculations using a written Matlab code, at the energies of interest in stellar nuclear reactions. The results were compared with standard reaction before and after application of a statistical analyses, to select the best parameters that made theoretical results as close as possible to the standard values. Fitting was made for different temperature ranges up to 10 GK, 0.6 GK and 0.25 GK. The evaluated results showed that as the temperature range becomes narrower, more error is ad
... Show More