Some of the main challenges in developing an effective network-based intrusion detection system (IDS) include analyzing large network traffic volumes and realizing the decision boundaries between normal and abnormal behaviors. Deploying feature selection together with efficient classifiers in the detection system can overcome these problems. Feature selection finds the most relevant features, thus reduces the dimensionality and complexity to analyze the network traffic. Moreover, using the most relevant features to build the predictive model, reduces the complexity of the developed model, thus reducing the building classifier model time and consequently improves the detection performance. In this study, two different sets of selected features have been adopted to train four machine-learning based classifiers. The two sets of selected features are based on Genetic Algorithm (GA) and Particle Swarm Optimization (PSO) approach respectively. These evolutionary-based algorithms are known to be effective in solving optimization problems. The classifiers used in this study are Naïve Bayes, k-Nearest Neighbor, Decision Tree and Support Vector Machine that have been trained and tested using the NSL-KDD dataset. The performance of the abovementioned classifiers using different features values was evaluated. The experimental results indicate that the detection accuracy improves by approximately 1.55% when implemented using the PSO-based selected features than that of using GA-based selected features. The Decision Tree classifier that was trained with PSO-based selected features outperformed other classifiers with accuracy, precision, recall, and f-score result of 99.38%, 99.36%, 99.32%, and 99.34% respectively. The results show that using optimal features coupling with a good classifier in a detection system able to reduce the classifier model building time, reduce the computational burden to analyze data, and consequently attain high detection rate.
The research attempts to diagnose the level of the effect of human resources flexibility (employees skills flexibility, employees behaviors flexibility, and human resource practice flexibility) in the south al-rusafa directorate of a power station one of the formations and the Ministry of Electricity, and impact of a range of variables related to the performance operational, namely, (efficiency, effectiveness)recognizing the importance of the subjects studied,& because of the importance of expected results of the field under consideration,researcher selected a sample of size (121) engineers and technicians of workers in the directorate. Was my hypotheses the major search of a relationship and impact between human resources flex
... Show MoreThe simulation study has been conducted for the harmonics of Nd: YAG laser, namely the second harmonic generation SHG, the third harmonic generation THG, and the fourth harmonic generation FHG. Determination of beam expander's expansion ratio for specific wavelength and given detection range is the key in beam expander design for determining minimum laser spot size at the target. Knowing optimum expansion ratio decreases receiving unit dimensions and increases its performance efficiency. Simulation of the above mentioned parameters is conducted for the two types of refractive beam expander, Keplerian and Galilean. Ideal refractive indices for the lenses are chosen adequately for Nd: YAG laser harmonics wavelengths, so that increasing transm
... Show MoreObjective: Evaluation the national standards for exposure to chemical materials and dusts in The State
Company for Drugs Industry in Samarra.
Methodology: A descriptive evaluation design is employed through the present study from 25th May 2011
to 30th November 2011 in order to evaluate the national standards for exposure chemical materials and dusts
in The State Company for Drugs Industry in Samarra. A purposive (non-probability) sample is selected for the
study which includes (110) workers from the State Company for Drugs Industry in Samarra. Data were
gathered through the workers` interviewed according to the nature of work that they perform. The evaluation
questionnaire comprised of three parts which include the w
The Ligand 6,6--(1,2-benzenediazo) bis (3-aminobenzoicacid) derived from o-phenylenediamine and 3-aminobenzoicacid was synthesized. The prepared ligand was identified by Microelemental Analysis, 1HNMR, FT-IR and UV-Vis spectroscopic techniques. Treatment of the ligand with the following metal ions (CoII, NiII, CuII and ZnII ) in aqueous ethanol with a 1:1 M:L ratio and at optimum pH. Characterization of these compounds has been done on the basis of elemental analysis, electronic data, FT-IR and UV-Vis, as well as magnetic susceptibility and conductivity measurements. The nature of the complexes formed were studied following the mole ratio and continuous variation methods, Beer's law obeyed over a concentration range (1×10-4 - 3×10-4 M). H
... Show MoreFlexible pavements are subjected to three main distress types: fatigue crack, thermal crack, and permanent deformation. Under severe climate conditions, thermal cracking particularly contributes largely to a considerable scale of premature deterioration of pavement infrastructure worldwide. This challenge is especially relevant for Europe, as weather conditions vary significantly throughout the year. Hydrated lime (HL) has been recognized as an effective additive to improve the mechanical properties of asphalt concrete for pavement applications. Previous research has found that a replacement of conventional limestone dust filler using hydrated lime at 2.5% of the total weight of aggregates generated an optimum improvement in the mec
... Show MoreConcrete pavements are essential to modern infrastructure, but their low tensile and flexural strengths can cause cracking and shrinkage. This study evaluates fiber reinforcement with steel and carbon fibers in various combinations to improve rigid pavement performance. Six concrete mixes were tested: a control mix with no fiber, a mix with 1% steel fiber (SF1%), a mix with 1% carbon fiber (CF1%), and three hybrid mixes with 1% fiber content: 0.75% steel /0.25% carbon fiber (SF0.75CF0.25), 0.25% steel /0.75% carbon fiber (SF0.25CF0.75), and 0.5% steel /0.5% carbon fiber ((SF0.5CF0.5). Laboratory experiments including compressive, flexural, and splitting tensile strength tests were conducted at 7, 28, and 90 days, while Finite Element Analys
... Show More