Some of the main challenges in developing an effective network-based intrusion detection system (IDS) include analyzing large network traffic volumes and realizing the decision boundaries between normal and abnormal behaviors. Deploying feature selection together with efficient classifiers in the detection system can overcome these problems. Feature selection finds the most relevant features, thus reduces the dimensionality and complexity to analyze the network traffic. Moreover, using the most relevant features to build the predictive model, reduces the complexity of the developed model, thus reducing the building classifier model time and consequently improves the detection performance. In this study, two different sets of selected features have been adopted to train four machine-learning based classifiers. The two sets of selected features are based on Genetic Algorithm (GA) and Particle Swarm Optimization (PSO) approach respectively. These evolutionary-based algorithms are known to be effective in solving optimization problems. The classifiers used in this study are Naïve Bayes, k-Nearest Neighbor, Decision Tree and Support Vector Machine that have been trained and tested using the NSL-KDD dataset. The performance of the abovementioned classifiers using different features values was evaluated. The experimental results indicate that the detection accuracy improves by approximately 1.55% when implemented using the PSO-based selected features than that of using GA-based selected features. The Decision Tree classifier that was trained with PSO-based selected features outperformed other classifiers with accuracy, precision, recall, and f-score result of 99.38%, 99.36%, 99.32%, and 99.34% respectively. The results show that using optimal features coupling with a good classifier in a detection system able to reduce the classifier model building time, reduce the computational burden to analyze data, and consequently attain high detection rate.
This study aimed to explore the manufacture of high-fat pellets for obesity induction diets in male Wistar rats and determined its effect on lipid profiles and body mass index. It was an experimental laboratory method with a post-test randomized control group. Formulation of high-fat pellets (HFD) and physico-chemical characteristics of pellets were conducted in September 2019. This study used about 28 male Wistar white rats, two months old, and 150-200 g body weight. Rats were acclimatized for seven days, then divided into four groups: 7 rats were given a standard feed of Confeed PARS CP594 (P0), and three groups (P1, P2, P3) were given high-fat feed (HFD FII) 30 g/head/day. The result showed that the mean fat content of Formula II pell
... Show MoreAddressed this research the impact of intelligence emotional dimensions of the main(self awareness, and self-management, and social awareness, and relationship management) in the performance excellence the university(performance optimization, and strategic development) this is by middling the styles decision making which are (rational and intuitive, and dependent, and spontaneous, and avoidant), and Go search of an intellectual dilemma raise fundamental questions revolve around the search was to answer those questions through a theoretical framework for search variables first and test models of the relationship and second through the impact six hypotheses President.The objective of the research to make sure the contr
... Show MoreMunicipalities.
Abstract
The purpose of this research is to measure the impact of regulatory flexibility dimensions (formal and authoritarian procedures) to achieve response to the requirements of high performance dimensions (the effective recruitment, intensive training, motivate employees, participation of workers) in the general municipal Directorate as one of the directorates of the Ministry of Municipalities and Public Works. For the purpose of this measure it has been selected sample composed of 88 individuals from the research community represents the levels of assistant general manager of department heads and managers of people and some of the staff to answer the questionnaire prepared for the purpose Hama
... Show MoreEvolutionary algorithms (EAs), as global search methods, are proved to be more robust than their counterpart local heuristics for detecting protein complexes in protein-protein interaction (PPI) networks. Typically, the source of robustness of these EAs comes from their components and parameters. These components are solution representation, selection, crossover, and mutation. Unfortunately, almost all EA based complex detection methods suggested in the literature were designed with only canonical or traditional components. Further, topological structure of the protein network is the main information that is used in the design of almost all such components. The main contribution of this paper is to formulate a more robust E
... Show MoreHigh temperature superconductors with a nominal composition HgBa2Ca2Cu3O8+δ
for different values of pressure (0.2,0.3, 0.5, 0.6, 0.9, 1.0 & 1.1)GPa were prepared by
a solid state reaction method. It has been found that the samples were semiconductor
P=0.2GPa.while the behavior of the other samples are superconductor in the rang
(80-300) K. Also the transition temperature Tc=143K is the maximum at P is equal to
0.5GPa. X-ray diffraction showed a tetragonal structure with the decreasing of the
lattice constant c with the increasing of the pressure. Also we found an increasing of
the density with the pressure.