Some of the main challenges in developing an effective network-based intrusion detection system (IDS) include analyzing large network traffic volumes and realizing the decision boundaries between normal and abnormal behaviors. Deploying feature selection together with efficient classifiers in the detection system can overcome these problems. Feature selection finds the most relevant features, thus reduces the dimensionality and complexity to analyze the network traffic. Moreover, using the most relevant features to build the predictive model, reduces the complexity of the developed model, thus reducing the building classifier model time and consequently improves the detection performance. In this study, two different sets of selected features have been adopted to train four machine-learning based classifiers. The two sets of selected features are based on Genetic Algorithm (GA) and Particle Swarm Optimization (PSO) approach respectively. These evolutionary-based algorithms are known to be effective in solving optimization problems. The classifiers used in this study are Naïve Bayes, k-Nearest Neighbor, Decision Tree and Support Vector Machine that have been trained and tested using the NSL-KDD dataset. The performance of the abovementioned classifiers using different features values was evaluated. The experimental results indicate that the detection accuracy improves by approximately 1.55% when implemented using the PSO-based selected features than that of using GA-based selected features. The Decision Tree classifier that was trained with PSO-based selected features outperformed other classifiers with accuracy, precision, recall, and f-score result of 99.38%, 99.36%, 99.32%, and 99.34% respectively. The results show that using optimal features coupling with a good classifier in a detection system able to reduce the classifier model building time, reduce the computational burden to analyze data, and consequently attain high detection rate.
Erratum for Organic acid concentration thresholds for ageing of carbonate minerals: Implications for CO2 trapping/storage.
Escherichia coli (E. coli) is a frequent gram-negative bacterium that causes nosocomial infections, affecting more than 100 million patients annually worldwide. Bacterial lipopolysaccharide (LPS) from E. coli binds to toll-like receptor 4 (TLR4) and its co-receptor’s cluster of differentiation protein 14 (CD14) and myeloid differentiation factor 2 (MD2), collectively known as the LPS receptor complex. LPCAT2 participates in lipid-raft assembly by phospholipid remodelling. Previous research has proven that LPCAT2 co-localises in lipid rafts with TLR4 and regulates macrophage inflammatory response. However, no published evidence exists of the influence of LPCAT2 on the gene expression of the LPS receptor complex induced by smooth or rough b
... Show MoreThe title compound was synthesized by 2:1 condensation between adamantan-1-ylamine and benzene-1,4- dicarbaldehyde in n-BuOH and produced a good yield 87% of new bis Schiff base. The compound skeleton was affirmed by FTIR, 1H NMR, LC-MS, and X-ray powder diffraction. The structure was solved by a parallel tempering process and refined by using Rietveld refinement. Two adamantan-1-ylimino groups are connected in the anti-positions to the planar central 1,4-dimethylbenzene group. All rings of the adamantyl group possess normal chair conformation.
This study depicts the removal of Manganese ions (Mn2+) from simulated wastewater by combined electrocoagulation/ electroflotation technologies. The effects of initial Mn concentration, current density (C.D.), electrolysis time, and different mesh numbers of stainless steel screen electrodes were investigated in a batch cell by adopting Taguchi experimental design to explore the optimum conditions for maximum removal efficiency of Mn. The results of multiple regression and signal to noise ratio (S/N) showed that the optimum conditions were Mn initial concentration of 100 ppm, C.D. of 4 mA/cm2, time of 120 min, and mesh no. of 30 (wire/inch). Also, the relative significance of each factor was attained by the analysis of variance (ANO
... Show MoreObjective: To determine the ability of uVDBP to discern SRNS from steroid-sensitive nephrotic syndrome (SSNS) in Iraqi children. Materials and Methods: This cross-sectional study enrolled children with SRNS (n=31) and SSNS (n=32) from the pediatric nephrology clinic of Babylon Hospital for Maternity and Pediatrics over three months. Patients' characteristics in terms of demographics, clinical data, and urinary investigations were collected. Quantitative analysis of uVDBP levels was undertaken via a commercially available ELISA kit. Results: The median uVDBP values were significantly higher (p-value<0.001) in the SRNS group (median=10.26, IQR=5.91 μg/mL) than in the SSNS group (median=0.953, IQR=4.12 μg/mL). A negative correlati
... Show More