Preferred Language
Articles
/
bsj-6210
Performance Evaluation of Intrusion Detection System using Selected Features and Machine Learning Classifiers
...Show More Authors

Some of the main challenges in developing an effective network-based intrusion detection system (IDS) include analyzing large network traffic volumes and realizing the decision boundaries between normal and abnormal behaviors. Deploying feature selection together with efficient classifiers in the detection system can overcome these problems.  Feature selection finds the most relevant features, thus reduces the dimensionality and complexity to analyze the network traffic.  Moreover, using the most relevant features to build the predictive model, reduces the complexity of the developed model, thus reducing the building classifier model time and consequently improves the detection performance.  In this study, two different sets of selected features have been adopted to train four machine-learning based classifiers.  The two sets of selected features are based on Genetic Algorithm (GA) and Particle Swarm Optimization (PSO) approach respectively.  These evolutionary-based algorithms are known to be effective in solving optimization problems.  The classifiers used in this study are Naïve Bayes, k-Nearest Neighbor, Decision Tree and Support Vector Machine that have been trained and tested using the NSL-KDD dataset. The performance of the abovementioned classifiers using different features values was evaluated.  The experimental results indicate that the detection accuracy improves by approximately 1.55% when implemented using the PSO-based selected features than that of using GA-based selected features.  The Decision Tree classifier that was trained with PSO-based selected features outperformed other classifiers with accuracy, precision, recall, and f-score result of 99.38%, 99.36%, 99.32%, and 99.34% respectively.  The results show that using optimal features coupling with a good classifier in a detection system able to reduce the classifier model building time, reduce the computational burden to analyze data, and consequently attain high detection rate.

Scopus Clarivate Crossref
View Publication Preview PDF
Quick Preview PDF
Publication Date
Sat Jan 02 2021
Journal Name
International Journal Of Pharmaceutical Research
Detection of Kaposi’s Associated Herpesvirus in Saliva of Drug Related Immunosupressed Patient
...Show More Authors

View Publication
Crossref
Publication Date
Mon Dec 02 2019
Journal Name
Technologies And Materials For Renewable Energy, Environment And Sustainability
Effect of thickness variation CdO/PSi thin films on detection of radiation
...Show More Authors

CdO films were deposited on substrates from glass, Silicon and Porous silicon by thermal chemical spray pyrolysis technique with different thicknesses (130 and 438.46) nm. Measurements of X-ray diffraction of CdO thin film proved that the structure of the Polycrystalline is cubic lattice, and its crystallite size is located within nano scale range where the perfect orientation is (200). The results show that the surface’s roughness and the root mean square increased with increasing the thickness of prepared films. The UV-Visible measurements show that the CdO films with different thicknesses possess an allowed direct transition with band gap (4) eV. AFM measurement revealed that the silicon porosity located in nano range. Cadmium oxide f

... Show More
Scopus (2)
Scopus
Publication Date
Tue Jun 30 2020
Journal Name
Iraq Journal Of Market Research And Consumer Protection
DETECTION OF HEAVY METALS POLLUTION INTYPES OF MILK SAMPLES IN BAGHDAD MARKETS
...Show More Authors

View Publication
Crossref
Publication Date
Wed Jul 10 2024
Journal Name
The Open Neuroimaging Journal
The Efficacy of Bedside Chest Ultrasound in the Detection of Traumatic Pneumothorax
...Show More Authors
Background

Chest X-rays have long been used to diagnose pneumothorax. In trauma patients, chest ultrasonography combined with chest CT may be a safer, faster, and more accurate approach. This could lead to better and quicker management of traumatic pneumothorax, as well as enhanced patient safety and clinical results.

Aim

The purpose of this study was to assess the efficacy and utility of bedside US chest in identifying traumatic pneumothorax and also its capacity to estimate the extent of the lesion in comparison to the gold standard modality chest computed tomography.

... Show More
View Publication
Scopus (4)
Crossref (4)
Scopus Crossref
Publication Date
Mon Feb 18 2019
Journal Name
Iraqi Journal Of Physics
Enhancement of gas response of annealed ZnO film for hydrogen gas detection
...Show More Authors

  The mechanism of hydrogen (H2) gas sensor in the range of 50-200 ppm of RF-sputtered annealed zinc oxide (ZnO) and without annealing was studied. The X-ray Diffraction( XRD) results showed that the Zn metal was completely converted to ZnO with a polycrystalline structure. The I–V characteristics of the device (PT/ZnO/Pt) measured at room temperature before and after annealing at 450 oC for4h, from which a linear relationship has been observed. The sensors had a maximum response to H2 at 350 oC for annealing ZnO and showed stable behavior for detecting H2 gases in the range of 50 to 200 ppm. The annealed film exhibited hig

... Show More
View Publication Preview PDF
Crossref (2)
Crossref
Publication Date
Tue Jun 15 2021
Journal Name
Iraqi Journal Of Pharmaceutical Sciences ( P-issn 1683 - 3597 E-issn 2521 - 3512)
Microneedle Array Patches: Characterization and in -vitro Evaluation
...Show More Authors

 Patch in transdermal drug delivery(TDDS) used to overcome the hypodermic drawback, but these patch also have absorption limitation for hydrophilic and macromolecule like peptide and DNA. So that micronized projection have the ability for skin penetration developed named as microneedle.  Microneedle drug delivery system is a novel drug delivery to overcome the limitation of TDDS like skin barrier restriction for large molecule. Microneedle patch can penetrate through skin subcutaneous into epidermis, avoiding nerve fiber and blood vessel contact. There are many type of microneedle patch like solid, polymer, hallow, hydrogel forming microneedle and dissolving microneedle with different method of microfabrication

View Publication Preview PDF
Scopus (3)
Scopus Crossref
Publication Date
Sat Dec 11 2021
Journal Name
Iraqi Journal Of Pharmaceutical Sciences ( P-issn 1683 - 3597 E-issn 2521 - 3512)
Anastrozole Loaded Nanostructured Lipid Carriers : Preparation and Evaluation
...Show More Authors

Anastrozole (ANZ) is considered constitute of the fourth –generation of Non–steroidal aromatase blockage, ANZ has use for hormone receptor positive breast cancer in postmenopausal women. The serious side effects of ANZ including, vaginal dryness, hot flashes, irritability, breast tenderness and un–stability in circulation.

Nanostructured lipid carriers (NLCs) have recently emerged as a multifunctional platform for drug delivery in cancer therapy.

Five formula were composed of (200 mg of glyceryl monostearate, 40 mg of oleic acid , 1% (w/w) Tween 80, 1% (w/w) Poloxamer 407, 1% (w/w) soy lecithin and Vitamin E Polyethylene Glycol Succinate.

The mean particle size, polydispersity index, zeta potential, entrapme

... Show More
View Publication Preview PDF
Scopus (16)
Crossref (10)
Scopus Crossref
Publication Date
Sun Jan 01 2023
Journal Name
Computers, Materials & Continua
Hybrid Deep Learning Enabled Load Prediction for Energy Storage Systems
...Show More Authors

View Publication
Scopus (16)
Crossref (13)
Scopus Clarivate Crossref
Publication Date
Sat Nov 02 2019
Journal Name
Advances In Intelligent Systems And Computing
Modified Opposition Based Learning to Improve Harmony Search Variants Exploration
...Show More Authors

View Publication
Scopus (9)
Crossref (6)
Scopus Clarivate Crossref
Publication Date
Thu Jun 01 2023
Journal Name
International Journal Of Electrical And Computer Engineering (ijece)
An optimized deep learning model for optical character recognition applications
...Show More Authors

The convolutional neural networks (CNN) are among the most utilized neural networks in various applications, including deep learning. In recent years, the continuing extension of CNN into increasingly complicated domains has made its training process more difficult. Thus, researchers adopted optimized hybrid algorithms to address this problem. In this work, a novel chaotic black hole algorithm-based approach was created for the training of CNN to optimize its performance via avoidance of entrapment in the local minima. The logistic chaotic map was used to initialize the population instead of using the uniform distribution. The proposed training algorithm was developed based on a specific benchmark problem for optical character recog

... Show More
View Publication
Scopus (1)
Scopus Crossref