Preferred Language
Articles
/
bsj-6210
Performance Evaluation of Intrusion Detection System using Selected Features and Machine Learning Classifiers
...Show More Authors

Some of the main challenges in developing an effective network-based intrusion detection system (IDS) include analyzing large network traffic volumes and realizing the decision boundaries between normal and abnormal behaviors. Deploying feature selection together with efficient classifiers in the detection system can overcome these problems.  Feature selection finds the most relevant features, thus reduces the dimensionality and complexity to analyze the network traffic.  Moreover, using the most relevant features to build the predictive model, reduces the complexity of the developed model, thus reducing the building classifier model time and consequently improves the detection performance.  In this study, two different sets of selected features have been adopted to train four machine-learning based classifiers.  The two sets of selected features are based on Genetic Algorithm (GA) and Particle Swarm Optimization (PSO) approach respectively.  These evolutionary-based algorithms are known to be effective in solving optimization problems.  The classifiers used in this study are Naïve Bayes, k-Nearest Neighbor, Decision Tree and Support Vector Machine that have been trained and tested using the NSL-KDD dataset. The performance of the abovementioned classifiers using different features values was evaluated.  The experimental results indicate that the detection accuracy improves by approximately 1.55% when implemented using the PSO-based selected features than that of using GA-based selected features.  The Decision Tree classifier that was trained with PSO-based selected features outperformed other classifiers with accuracy, precision, recall, and f-score result of 99.38%, 99.36%, 99.32%, and 99.34% respectively.  The results show that using optimal features coupling with a good classifier in a detection system able to reduce the classifier model building time, reduce the computational burden to analyze data, and consequently attain high detection rate.

Scopus Clarivate Crossref
View Publication Preview PDF
Quick Preview PDF
Publication Date
Wed Dec 01 2021
Journal Name
Baghdad Science Journal
Fabrication and Characterization of Nanofibers Membranes using Electrospinning Technology for Oil Removal
...Show More Authors

Oily wastewater is one of the most challenging streams to deal with especially if the oil exists in emulsified form. In this study, electrospinning method was used to prepare nanofiberous polyvinylidene fluoride (PVDF) membranes and study their performance in oil removal. Graphene particles were embedded in the electrospun PVDF membrane to enhance the efficiency of the membranes. The prepared membranes were characterized using a scanning electron microscopy (SEM) to verify the graphene stabilization on the surface of the membrane homogeneously; while FTIR was used to detect the functional groups on the membrane surface. The membrane wettability was assessed by measuring the contact angle. The PVDF and PVDF / Graphene membranes efficiency

... Show More
View Publication Preview PDF
Crossref (1)
Clarivate Crossref
Publication Date
Mon Jan 01 2024
Journal Name
Baghdad Science Journal
Classification of Arabic Alphabets Using a Combination of a Convolutional Neural Network and the Morphological Gradient Method
...Show More Authors

The field of Optical Character Recognition (OCR) is the process of converting an image of text into a machine-readable text format. The classification of Arabic manuscripts in general is part of this field. In recent years, the processing of Arabian image databases by deep learning architectures has experienced a remarkable development. However, this remains insufficient to satisfy the enormous wealth of Arabic manuscripts. In this research, a deep learning architecture is used to address the issue of classifying Arabic letters written by hand. The method based on a convolutional neural network (CNN) architecture as a self-extractor and classifier. Considering the nature of the dataset images (binary images), the contours of the alphabet

... Show More
View Publication Preview PDF
Scopus (1)
Crossref (1)
Scopus Crossref
Publication Date
Sat Sep 01 2018
Journal Name
Al-nahrain Journal For Engineering Sciences
Performance Analysis of FSO under Turbulent Channel Using OSTBC
...Show More Authors

Free Space Optics (FSO) plays a vital role in modern wireless communications due to its advantages over fiber optics and RF techniques where a transmission of huge bandwidth and access to remote places become possible. The specific aim of this research is to analyze the Bit-Error Rate (BER) for FSO communication system when the signal is sent the over medium of turbulence channel, where the fading channel is described by the Gamma-Gamma model. The signal quality is improved by using Optical Space-Time Block- Code (OSTBC) and then the BER will be reduced. Optical 2×2 Alamouti scheme required 14 dB bit energy to noise ratio (Eb/N0) at 10-5 bit error rate (BER) which gives 3.5 dB gain as compared to no diversity scheme. Th

... Show More
View Publication
Crossref
Publication Date
Wed Oct 25 2023
Journal Name
Plos One
Performance enhancement of high order Hahn polynomials using multithreading
...Show More Authors

Orthogonal polynomials and their moments have significant role in image processing and computer vision field. One of the polynomials is discrete Hahn polynomials (DHaPs), which are used for compression, and feature extraction. However, when the moment order becomes high, they suffer from numerical instability. This paper proposes a fast approach for computing the high orders DHaPs. This work takes advantage of the multithread for the calculation of Hahn polynomials coefficients. To take advantage of the available processing capabilities, independent calculations are divided among threads. The research provides a distribution method to achieve a more balanced processing burden among the threads. The proposed methods are tested for va

... Show More
View Publication
Scopus (7)
Crossref (5)
Scopus Clarivate Crossref
Publication Date
Tue Jan 01 2019
Journal Name
Energy Procedia
Analysing of Hueckel Edge Detector Performance Using Satellite Image
...Show More Authors

In this research, an analysis for the standard Hueckel edge detection algorithm behaviour by using three dimensional representations for the edge goodness criterion is presents after applying it on a real high texture satellite image, where the edge goodness criterion is analysis statistically. The Hueckel edge detection algorithm showed a forward exponential relationship between the execution time with the used disk radius. Hueckel restrictions that mentioned in his papers are adopted in this research. A discussion for the resultant edge shape and malformation is presented, since this is the first practical study of applying Hueckel edge detection algorithm on a real high texture image containing ramp edges (satellite image).

View Publication Preview PDF
Scopus Clarivate Crossref
Publication Date
Sun Mar 17 2019
Journal Name
Baghdad Science Journal
Bioremediation of Petroleum Hydrocarbons Contaminated Soil using Bio piles System
...Show More Authors

This study was focused on biotreatment of soil which polluted by petroleum compounds (Diesel) which caused serious environmental problems. One of the most effective and promising ways to treat diesel-contaminated soil is bioremediation. It is a choice that offers the potential to destroy harmful pollutants using biological activity. Four bacterial strains were isolated from diesel contaminated soil samples. The isolates were identified by the Vitek 2 system, as Sphingomonas paucimobilis, Pentoae species, Staphylococcus aureus, and Enterobacter cloacae. The potential of biological surfactant production was tested using the Sigma 703D stand-alone tensiometer showed that these isolates are biological surfactant producers. The bet

... Show More
View Publication
Scopus (10)
Crossref (3)
Scopus Clarivate Crossref
Publication Date
Wed Dec 01 2021
Journal Name
Baghdad Science Journal
Advanced Intelligent Data Hiding Using Video Stego and Convolutional Neural Networks
...Show More Authors

Steganography is a technique of concealing secret data within other quotidian files of the same or different types. Hiding data has been essential to digital information security. This work aims to design a stego method that can effectively hide a message inside the images of the video file.  In this work, a video steganography model has been proposed through training a model to hiding video (or images) within another video using convolutional neural networks (CNN). By using a CNN in this approach, two main goals can be achieved for any steganographic methods which are, increasing security (hardness to observed and broken by used steganalysis program), this was achieved in this work as the weights and architecture are randomized. Thus,

... Show More
View Publication Preview PDF
Scopus (9)
Crossref (1)
Scopus Clarivate Crossref
Publication Date
Wed Feb 01 2023
Journal Name
Baghdad Science Journal
Retrieving Encrypted Images Using Convolution Neural Network and Fully Homomorphic Encryption
...Show More Authors

A content-based image retrieval (CBIR) is a technique used to retrieve images from an image database. However, the CBIR process suffers from less accuracy to retrieve images from an extensive image database and ensure the privacy of images. This paper aims to address the issues of accuracy utilizing deep learning techniques as the CNN method. Also, it provides the necessary privacy for images using fully homomorphic encryption methods by Cheon, Kim, Kim, and Song (CKKS). To achieve these aims, a system has been proposed, namely RCNN_CKKS, that includes two parts. The first part (offline processing) extracts automated high-level features based on a flatting layer in a convolutional neural network (CNN) and then stores these features in a

... Show More
View Publication Preview PDF
Scopus (16)
Crossref (4)
Scopus Clarivate Crossref
Publication Date
Mon Feb 01 2021
Journal Name
Iop Conference Series: Materials Science And Engineering
Performance Evaluation of a Combined Electrocoagulation– Electrooxidation Process for the Treatment of Petroleum Refinery Wastewater
...Show More Authors
Abstract<p>The present study investigates the application of a combined electrocoagulation-electrooxidation (EC-EO) process for the treatment of wastewater generated from Al-Dewaniya petroleum refinery plant in Iraq. The EC-EO process was examined in terms of its ability to simultaneously produce coagulant and oxidant agents by using a parallel plate configuration system composed of stainless steel plates as cathode and pair of aluminum and graphite plates as anode at two different current concentrations (1.92A/l and 0.96A/l). The results showed that the best conditions for treatment of Al-Dewaniya petroleum refinery wastewater using the combined approach were current concentration of (0.96A/l), current density</p> ... Show More
View Publication
Crossref (10)
Crossref
Publication Date
Sun Apr 30 2023
Journal Name
Al-kindy College Medical Journal
Clinicopathological Features and ICD-10 Categorization of Oro-maxillofacial Surgical Biopsies from Sulaimani
...Show More Authors

Background: Few updated retrospective histopathological-based studies in Iraq evaluate a comprehensive spectrum of oro-maxillofacial lesions. Also, there was a need for a systematic way of categorizing the diseases and reporting results in codes according to the WHO classification that helps occupational health professionals in the clinical-epidemiological approach.

Objectives: to establish an electronic archiving database according to the ICD-10 that encompasses oro-maxillofacial lesions in Sulaimani city for the last 12 years, then to study the prevalence trend and correlation with clinicopathological parameters.

Subjects and Methods:  A descri

... Show More
View Publication Preview PDF
Scopus Crossref