The current research is a spectroscopic study of Coumarin 334 dissolved in methanol. The range of concentrations of the prepared stock solution was (3.39x10-9 to 2.03x10-8) M. Some optical characteristics of this dye were investigated such as absorbance and transmission spectra, absorption coefficient, refractive and extinction coefficients, oscillation and dispersion energies, and energy band gap. The absorbance spectra were recorded at 452 nm using Broad Band Cavity Enhanced Absorption Spectroscopy (BBCEAS) which depends on increasing the path length of the traveling light from the source to the detector. The minimum absorbance amount was 0.07 with a low concentration of 3.39x10-9 M. As a result, the other optical properties were calculated on the basis of the lowest values of absorbance. The energy band gap, which is important to detect the electronic band structure of the material, was determined; it was found to be equal to ~2.55 eV. The low values of the concentration made less collision between the molecules in the materials and the incident light. This led to a reduction in the background noise and in the percentages of losses. Furthermore, the dispersion and single oscillator energies, which help to calculate the average strength of the inter-band optical transitions and to prepare the quantifiable information about the band structure of the material, were calculated to reduce with the increasing concentrations. The refractive and extinction coefficients were determined because they are considered important factors for the optical materials and found to increase with the increasing concentrations. As a result, the study of the optical behavior of Coumarin 334 highlighted the promising materials for photonics applications at very low concentrations. All these properties are considered the main factors to determine the usefulness of the materials in advanced applications and to develop the performance of the devices which depend on the optical characteristics.
The paper reports the influence of annealing temperature under vacuum for one hour on the some structural and electrical properties of p-type CdTe thin films were grown at room temperature under high vacuum by using thermal evaporation technique with a mean thickness about 600nm. X-ray diffraction analysis confirms the formation of CdTe cubic phase at all annealing temperature. From investigated the electrical properties of CdTe thin films, the electrical conductivity, the majority carrier concentration, and the Hall mobility were found increase with increasing annealing temperatures.
Background: Acute appendicitis is the most common abdominal surgical emergency. The diagnosis of this condition is still essentially clinical and there is difficulty in the clinical diagnosis, especially among elderly, children and patients with a typical presentation, so early and accurate diagnosis of acute appendicitis is important to avoid its complications.Objectives: To evaluate the degree of accuracy of Alvarado scoring system in the diagnosis of acute appendicitis.Method: Two hundred patients were admitted to the Alkindy Teaching Hospital from January 2011 to april 2014- presented with symptoms and signs suggestive of acute appendicitis. After examination and investigations all patients were given a score according to Alvarado sc
... Show MoreIn this study, the effect of construction joints on the performance of reinforced concrete beams was experimentally investigated. Seven beam specimens, with dimensions of 200×100×1000 mm, were fabricated. The variables were considered including; the location and configuration of the joints. One beam was cast without a joint (Reference specimen), two specimens were fabricated with a one horizontal joint located either at tension, or compression zone. The fourth
beam had two horizontal joints placed at tension, and compression area. The remaining specimens were with one or two inclined joints positioned at the shear span or beam’s mid-span. The specimens were subjected to a monotonic central concentrated loading until the failure. T
The electronic structure of zinc blend indium gallium phosphide In0.5Ga0.5P nanocrystals which have dimension (2-2.8 nm) is investigated using the density functional theory coupled with large unit cell (LUC) for the different size core (8 ,16,54,64) atoms respectively. The investigated properties include total energy, energy gap, conduction band, valence band, cohesive energy, ionicity and density of state etc. as a function of core size and lattice constant. Results show the shape effect of increasing the core size and lattice constant on these electronic properties
The general assumption of linear variation of earth pressures with depth on retaining structures is still controversial; investigations are yet required to determine those distributions of the passive earth pressure (PEP) accurately and deduce the corresponding centroid location. In particular, for rigid retaining walls, the calculation of PEP is strongly dependent on the type of wall movement. This paper presents a numerical analysis for studying the influence of wall movement on the PEP distribution on a rigid retaining wall and the passive earth thrust location. The numerical predictions are remarkably similar to existing experimental works as recorded on scaled test models and ful
The operation and management of water resources projects have direct and significant effects on the optimum use of water. Artificial intelligence techniques are a new tool used to help in making optimized decisions, based on knowledge bases in the planning, implementation, operation and management of projects as well as controlling flowing water quantities to prevent flooding and storage of excess water and use it during drought.
In this research, an Expert System was designed for operating and managing the system of AthTharthar Lake (ESSTAR). It was applied for all expected conditions of flow, including the cases of drought, normal flow, and during floods. Moreover, the cases of hypothetical op
... Show MoreThis paper presents stochastic analysis using the perturbation method to model the structure of a container to verify the distributions of probability of maximum and minimum axial forces reactions in piles. The proposed simulation of a container port terminal under 11 scenarios of load combinations was presented. The probability distributions for live loads are assigned according to the input parameters of simulation data. Part of the load itself is implicitly combined such as vertical live load which includes the weight of equipment and containers and wind load. The structural model was simulated in the software STAAD Pro., while the statistical analyses were performed with MATLAB. The results demonstrated that, the most significant extern
... Show More