The current study was conducted for studying the impact of cold plasma on the expression level of three genes that participate in the biosynthesis of the phenylpropanoid pathway in Ocimum basilicum. These studied genes were cinnamate 4-hydroxylase (c4h), 4-coumarate CoA ligase (4cl), and eugenol O-methyl transferase (eomt). Also, the cold plasma impact was studied on the essential oil components and their relation with the gene expression level. The results demonstrated that cold plasma seeds germination of the treated groups 2 (initially for 3 minutes and 3 minutes after 7 days) ,and group 3(initially for 5 minutes and 3 minutes after 7 days) were faster than the control group. Also, the height average of the mature plants of groups 2and 3 was between (50 to73), (50 to 100) cm, respectively compared to the control group which was (40 to 70cm). Moreover, the results indicated significant differences (P-value ≤0.01) in the level of gene expression, which increased for the c4h, 4cl, and eomt genes in group 2 about (5.63 ±0.39), (3.42 ±040) ,and (5.41±0.23) folds respectively compared with untreated control. Additionally, the level of gene expression increased for the c4h, 4cl, and eomt genes in group 3 about (42.34 ±049), (4.13 ±0.38), and (6.29 ±0.71) folds compared with untreated control(1.00 ±0.00) folds.Concerning the contents of essential oil for the control group, group 2, and group 3 were 0.434%, 0.713, and 0.792% (v/w) respectively. Moreover, the general composition of the essential oil in the examined sweet basil, phenylpropanoids was the eugenol compound and its derivatives for the control group, group 2, and group 3 which were 2.76%, 8%, and 11% (v/w) respectively. We concluded that the atmospheric cold plasma has shown an effect on gene expression and essential oil content of phenylpropanoid compounds in Ocimum basilicum L. cultivated in Iraq, as the essential oil contents have important therapeutic properties.
Artificial roughness on the absorber plate of a Solar Air Heater (SAH) is a popular technique for increasing its effective efficiency. The study investigated the effect of geometrical parameters of discrete multi-arc ribs (DMAR) installed below the SAH absorber plate on the effective efficiency. The effects of major roughness factors, such as number of gaps (Ng = 1-4), rib pitch (p/e = 4-16), rib height (e/D = 0.018-0.045), gab width (wg/e = 0.5-2), angle of attack ( = 30-75), and Reynolds number (Re= 2000-20000) on the performance of a SAH are studied. The performance of the SAH is evaluated using a top-down iterative technique. The results show that as Re rises, SAH-effective DMAR's efficiency first ascends to a specified value o
... Show MoreObjective This study evaluated the effects of adding titanium oxide (TiO2) nanofillers on the tear strength, tensile strength, elongation percentage, and hardness of room-temperature-vulcanized (RTV) VST50F and high-temperature-vulcanized (HTV) Cosmesil M511 maxillofacial silicone elastomers. Methods Two types of maxillofacial elastomers, VST50F RTV and Cosmesil M511 HTV, were used. Nano-TiO2 powder was applied as a nanofiller. A total of 120 specimens were fabricated, 60 each of VST50F and Cosmesil M511. The specimens of each type of elastomer were divided into three equal groups on which tests were conducted for tear strength, tensile strength, and hardness i.e., 20 specimens were used for each test. Each group of 20 specimens was further
... Show MoreThe influence of fear on the dynamics of harvested prey-predator model with intra-specific competition is suggested and studied, where the fear effect from the predation causes decreases of growth rate of prey. We suppose that the predator attacks the prey under the Holling type IV functional response. he existence of the solution is investigated and the bounded-ness of the solution is studied too. In addition, the dynamical behavior of the system is established locally and globally. Furthermore, the persistence conditions are investigated. Finally, numerical analysis of the system is carried out.
Heat treatment by solid solution method in the ?+? phase region was used at 970°C for Ti-5Al-2.5Fe alloy. The specimens cooled under different cooling media [water quenched (WQ), air cooled (AC) and furnace cooled (FC)], and subsequently aged at 550°C for 4 hours. Five specimens from each treatment were immersed in simulated body fluid SBF for a period of time (3 months). The dependence of corrosion rate on compositional variation in the phases resulted from various type of cooling rates are discussed based on immersion tests. The EDXA results show the precipitation of phosphate and calcium compounds on the alloy after 3 months of immersion in blood plasma solution forming a bone-like apatite, which enhanced the alloy biocompatibility ma
... Show MoreThe present study reports the effect of temperature and liquid hourly space velocity (LHSV) on the cumene cracking reaction rate and selectivity by using a laboratory continuous flow unit with fixed bed reactor operating at atmospheric pressure. The prepared HX zeolite was made from Iraqi kaolin with good crystallinity .The activity and selectivity of prepared HX-zeolite was compared with standard HY zeolite and HX zeolite catalysts in the temperature range of 673-823K and LHSV of 0.7-2.5 h-1 . It was found that the cumene conversion increases with increasing temperature and decreasing LHSV at 823K and LHSV of 0.7 h-1 the conversions 65.32, 42.88 and 59.42 mol% for HY, HX and prepared HX catalysts respectively and at LHSV of 2.5 h-1 and th
... Show MoreThe construction of highly safe and durable buildings that can bear accident damage risks including fire, earthquake, impact, and more, can be considered to be the most important goal in civil engineering technology. An experimental investigation was prepared to study the influence of adding various percentages 0%, 1.0%, and 1.5% of micro steel fiber volume fraction (Vf) to reactive powder concrete (RPC)—whose properties are compressive strength, splitting tensile strength, flexural strength, and absorbed energy—after the exposure to fire flame of various burning temperatures 300, 400, and 500 °C using gradual-, foam-, and sudden-cooling methods. The outcomes of this research proved that the maximum reduction in mechanical prop
... Show MoreBackground: Facial disfigurement can be the result of a congenital anomaly, trauma or tumor surgery, in many cases the prosthetic rehabilitation is indicated. Maxillofacial prosthetic materials should have desirable and ideal physical, aesthetic, and biological properties and those properties should be kept for long period of time in order to reach patient acceptance. Silicone elastomer are the most commonly used material for facial restoration because of its favorable properties mechanically and physically as the biocompatibility and good elasticity. Aim of this study: This study aimed to evaluate the effect of addition of Aluminum oxide (Al2O3) Nano fillers in different concentrations on tear strength and hardness of VST 50F room tempe
... Show More
