In this work, a weighted H lder function that approximates a Jacobi polynomial which solves the second order singular Sturm-Liouville equation is discussed. This is generally equivalent to the Jacobean translations and the moduli of smoothness. This paper aims to focus on improving methods of approximation and finding the upper and lower estimates for the degree of approximation in weighted H lder spaces by modifying the modulus of continuity and smoothness. Moreover, some properties for the moduli of smoothness with direct and inverse results are considered.
According to the theory of regular geometric functions, the relevance of geometry to analysis is a critical feature. One of the significant tools to study operators is to utilize the convolution product. The dynamic techniques of convolution have attracted numerous complex analyses in current research. In this effort, an attempt is made by utilizing the said techniques to study a new linear complex operator connecting an incomplete beta function and a Hurwitz–Lerch zeta function of certain meromorphic functions. Furthermore, we employ a method based on the first-order differential subordination to derive new and better differential complex inequalities, namely differential subordinations.
In this research, the problem of multi- objective modal transport was formulated with mixed constraints to find the optimal solution. The foggy approach of the Multi-objective Transfer Model (MOTP) was applied. There are three objectives to reduce costs to the minimum cost of transportation, administrative cost and cost of the goods. The linear membership function, the Exponential membership function, and the Hyperbolic membership function. Where the proposed model was used in the General Company for the manufacture of grain to reduce the cost of transport to the minimum and to find the best plan to transfer the product according to the restrictions imposed on the model.
New class A^* (a,c,k,β,α,γ,μ) is introduced of meromorphic univalent functions with positive coefficient f(z)=□(1/z)+∑_(n=1)^∞▒〖a_n z^n 〗,(a_n≥0,z∈U^*,∀ n∈ N={1,2,3,…}) defined by the integral operator in the punctured unit disc U^*={z∈C∶0<|z|<1}, satisfying |(z^2 (I^k (L^* (a,c)f(z)))^''+2z(I^k (L^* (a,c)f(z)))^')/(βz(I^k (L^* (a,c)f(z)))^''-α(1+γ)z(I^k (L^* (a,c)f(z)))^' )|<μ,(0<μ≤1,0≤α,γ<1,0<β≤1/2 ,k=1,2,3,… ) . Several properties were studied like coefficient estimates, convex set and weighted mean.
Recently, numerous the generalizations of Hurwitz-Lerch zeta functions are investigated and introduced. In this paper, by using the extended generalized Hurwitz-Lerch zeta function, a new Salagean’s differential operator is studied. Based on this new operator, a new geometric class and yielded coefficient bounds, growth and distortion result, radii of convexity, star-likeness, close-to-convexity, as well as extreme points are discussed.
In this work, we study a new class of meromorphicmultivalent functions, defined by fractional differ-integral operator.We obtain some geometricproperties, such ascoefficient inequality, growth and distortion bounds, convolution properties, integral representation, radii of starlikeness, convexity, extreme pointsproperties, weighted mean and arithmetic meanproperties.
The aim of this paper is to approximate multidimensional functions f∈C(R^s) by developing a new type of Feedforward neural networks (FFNS) which we called it Greedy ridge function neural networks (GRGFNNS). Also, we introduce a modification to the greedy algorithm which is used to train the greedy ridge function neural networks. An error bound are introduced in Sobolov space. Finally, a comparison was made between the three algorithms (modified greedy algorithm, Backpropagation algorithm and the result in [1]).
In this paper we show that the function , () p fLI α ∈ ,0<p<1 where I=[-1,1] can be approximated by an algebraic polynomial with an error not exceeding , 1 ( , , ) kp ft n ϕ αω where
,
1 ( , , ) kp ft n ϕ αω is the Ditizian–Totik modules of smoothness of unbounded function in , () p LI
The major target of this paper is to study a confirmed class of meromorphic univalent functions . We procure several results, such as those related to coefficient estimates, distortion and growth theorem, radii of starlikeness, and convexity for this class, n additionto hadamard product, convex combination, closure theorem, integral operators, and neighborhoods.
In this research paper, we explain the use of the convexity and the starlikness properties of a given function to generate special properties of differential subordination and superordination functions in the classes of analytic functions that have the form in the unit disk. We also show the significant of these properties to derive sandwich results when the Srivastava- Attiya operator is used.
We obtain the coefficient estimates, extreme points, distortion and growth boundaries, radii of starlikeness, convexity, and close-to-convexity, according to the main purpose of this paper.