In this work, a weighted H lder function that approximates a Jacobi polynomial which solves the second order singular Sturm-Liouville equation is discussed. This is generally equivalent to the Jacobean translations and the moduli of smoothness. This paper aims to focus on improving methods of approximation and finding the upper and lower estimates for the degree of approximation in weighted H lder spaces by modifying the modulus of continuity and smoothness. Moreover, some properties for the moduli of smoothness with direct and inverse results are considered.
The evolution of the Internet of things (IoT) led to connect billions of heterogeneous physical devices together to improve the quality of human life by collecting data from their environment. However, there is a need to store huge data in big storage and high computational capabilities. Cloud computing can be used to store big data. The data of IoT devices is transferred using two types of protocols: Message Queuing Telemetry Transport (MQTT) and Hypertext Transfer Protocol (HTTP). This paper aims to make a high performance and more reliable system through efficient use of resources. Thus, load balancing in cloud computing is used to dynamically distribute the workload across nodes to avoid overloading any individual r
... Show MoreIn the present paper, by making use of the new generalized operator, some results of third order differential subordination and differential superordination consequence for analytic functions are obtained. Also, some sandwich-type theorems are presented.
This research aims to review the importance of estimating the nonparametric regression function using so-called Canonical Kernel which depends on re-scale the smoothing parameter, which has a large and important role in Kernel and give the sound amount of smoothing .
We has been shown the importance of this method through the application of these concepts on real data refer to international exchange rates to the U.S. dollar against the Japanese yen for the period from January 2007 to March 2010. The results demonstrated preference the nonparametric estimator with Gaussian on the other nonparametric and parametric regression estima
... Show MoreIn this paper, we introduce and discuss an extended subclass〖 Ą〗_p^*(λ,α,γ) of meromorphic multivalent functions involving Ruscheweyh derivative operator. Coefficients inequality, distortion theorems, closure theorem for this subclass are obtained.
In this paper, the class of meromorphic multivalent functions of the form by using fractional differ-integral operators is introduced. We get Coefficients estimates, radii of convexity and star likeness. Also closure theorems and distortion theorem for the class , is calculaed.
In this paper, we characterize normal composition operators induced by holomorphic self-map , when and .Moreover, we study other related classes of operators, and then we generalize these results to polynomials of degree n.
Roughness length is one of the key variables in micrometeorological studies and environmental studies in regards to describing development of cities and urban environments. By utilizing the three dimensions ultrasonic anemometer installed at Mustansiriyah university, we determined the rate of the height of the rough elements (trees, buildings and bridges) to the surrounding area of the university for a radius of 1 km. After this, we calculated the zero-plane displacement length of eight sections and calculated the length of surface roughness. The results proved that the ranges of the variables above are ZH (9.2-13.8) m, Zd (4.3-8.1) m and Zo (0.24-0.48) m.
The main goal of this paper is to introduce the higher derivatives multivalent harmonic function class, which is defined by the general linear operator. As a result, geometric properties such as coefficient estimation, convex combination, extreme point, distortion theorem and convolution property are obtained. Finally, we show that this class is invariant under the Bernandi-Libera-Livingston integral for harmonic functions.