Offline handwritten signature is a type of behavioral biometric-based on an image. Its problem is the accuracy of the verification because once an individual signs, he/she seldom signs the same signature. This is referred to as intra-user variability. This research aims to improve the recognition accuracy of the offline signature. The proposed method is presented by using both signature length normalization and histogram orientation gradient (HOG) for the reason of accuracy improving. In terms of verification, a deep-learning technique using a convolution neural network (CNN) is exploited for building the reference model for a future prediction. Experiments are conducted by utilizing 4,000 genuine as well as 2,000 skilled forged signature samples collected from 200 individuals. This database is publicly distributed under the name of SIGMA for Malaysian individuals. The experimental results are reported as both error forms, namely False Accept Rate (FAR) and False Reject Rate (FRR), which achieved up to 4.15% and 1.65% respectively. The overall successful accuracy is up to 97.1%. A comparison is also made that the proposed methodology outperforms the state-of-the-art works that are using the same SIGMA database.
Background: In human life, malnutrition may adversely affect various aspects of growth at different stages of life. Teeth are particularly sensitive to malnutrition. Malnutrition may affect odontometeric measurement involving arch width and length of primary dentition. The aim of this study is to estimate the effect of nutrition on arch width and length dimension measurements among children aged 5 years old. Material and methods: This study was conducted among malnourished group in comparison to well-nourished group matching with age and gender. The present study included 158 children aged 5 years (78 malnourished and 80 well-nourished). The assessment of nutritional status was done by using three nutritional indicators, namely Height-for-a
... Show MoreSome structures such as tall buildings, offshore platforms, and bridge bents are subjected to lateral loads of considerable magnitude due to wind and wave actions, ship impacts, or high-speed vehicles. Significant torsional forces can be transferred to the foundation piles by virtue of eccentric lateral loading. The testing program of this study includes one group consists of 3 piles, four percentages of allowable vertical load were used (0%, 25%, 50%, and 100%) with two L/D ratios 20 and 30, vertical allowable load 110 N for L/D = 20 and 156 N for L/D = 30. The results obtained indicate that the torsional capacity for pile group increases with increasing the percentage of allowable vertical load, when the percentage of allowable vertica
... Show MoreEarth dams are constructed mainly from soil. A homogenous earth dam is composed of only one material. The seepage through such dams is quite high. Upstream impervious blanket is one of the methods used to control seepage through the dam foundations. Bennet's method is one of the commonly used methods to design an impervious upstream blanket. Design charts are developed relating the length of blanket, total reservoir head, total base width of the dam (excluding downstream drainage), the coefficient of permeability of the blanket material, blanket thickness, foundation thickness, and coefficient of permeability of the foundation soil, based on the equations governing the Bennet's method for a homogenous earth dam with a blanket of uniform
... Show MoreBackground/Objectives: The purpose of current research aims to a modified image representation framework for Content-Based Image Retrieval (CBIR) through gray scale input image, Zernike Moments (ZMs) properties, Local Binary Pattern (LBP), Y Color Space, Slantlet Transform (SLT), and Discrete Wavelet Transform (DWT). Methods/Statistical analysis: This study surveyed and analysed three standard datasets WANG V1.0, WANG V2.0, and Caltech 101. The features an image of objects in this sets that belong to 101 classes-with approximately 40-800 images for every category. The suggested infrastructure within the study seeks to present a description and operationalization of the CBIR system through automated attribute extraction system premised on CN
... Show MoreA hand gesture recognition system provides a robust and innovative solution to nonverbal communication through human–computer interaction. Deep learning models have excellent potential for usage in recognition applications. To overcome related issues, most previous studies have proposed new model architectures or have fine-tuned pre-trained models. Furthermore, these studies relied on one standard dataset for both training and testing. Thus, the accuracy of these studies is reasonable. Unlike these works, the current study investigates two deep learning models with intermediate layers to recognize static hand gesture images. Both models were tested on different datasets, adjusted to suit the dataset, and then trained under different m
... Show MoreSome of the main challenges in developing an effective network-based intrusion detection system (IDS) include analyzing large network traffic volumes and realizing the decision boundaries between normal and abnormal behaviors. Deploying feature selection together with efficient classifiers in the detection system can overcome these problems. Feature selection finds the most relevant features, thus reduces the dimensionality and complexity to analyze the network traffic. Moreover, using the most relevant features to build the predictive model, reduces the complexity of the developed model, thus reducing the building classifier model time and consequently improves the detection performance. In this study, two different sets of select
... Show MoreExamining and comparing the image quality of degenerative cervical spine diseases through the application of three MRI sequences; the Two-Dimension T2 Weighed Turbo Spin Echo (2D T2W TSE), the Three-Dimension T2 Weighted Turbo Spin Echo (3D T2W TSE), and the T2 Turbo Field Echo (T2_TFE). Thirty-three patients who were diagnosed as having degenerative cervical spine diseases were involved in this study. Their age range was 40-60 years old. The images were produced via a 1.5 Tesla MRI device using (2D T2W TSE, 3D T2W TSE, and T2_TFE) sequences in the sagittal plane. The image quality was examined by objective and subjective assessments. The MRI image characteristics of the cervical spines (C4-C5, C5-C6, C6-C7) showed significant difference
... Show MoreThis researchpaper includes the incorporation of Alliin at various energy levels and angles
With Metformin using Gaussian 09 and Gaussian view 06. Two computers were used in this work. Samples were generated to draw, integrate, simulate and measure the value of the potential energy surface by means of which the lowest energy value was (-1227.408au). The best correlation compound was achieved between Alliin and Metformin through the low energy values where the best place for metformin to b
... Show MoreIn this work, laboratory experiments were carried out to verify direct contact membrane distillation system’s performance in highly saline water desalination. The study included the investigation of various operating conditions, like feed flow rate, temperature and concentration of NaCl solution and their impact on the permeation flux were discussed. 16 cm2 of a flat sheet membrane module with commercial poly-tetra-fluoroethylene (PTFE) membrane, which has 0.22 μm pore size, 96 µm thickness and 78% average porosity, was used. A high salt rejection factor was obtained greater than 99.9%, and the permeation flux up to 17.27 kg/m2.h was achieved at 65°C for hot feed side and 20°C for cold side stream.