Preferred Language
Articles
/
bsj-6117
Offline Signature Biometric Verification with Length Normalization using Convolution Neural Network
...Show More Authors

Offline handwritten signature is a type of behavioral biometric-based on an image. Its problem is the accuracy of the verification because once an individual signs, he/she seldom signs the same signature. This is referred to as intra-user variability. This research aims to improve the recognition accuracy of the offline signature. The proposed method is presented by using both signature length normalization and histogram orientation gradient (HOG) for the reason of accuracy improving. In terms of verification, a deep-learning technique using a convolution neural network (CNN) is exploited for building the reference model for a future prediction. Experiments are conducted by utilizing 4,000 genuine as well as 2,000 skilled forged signature samples collected from 200 individuals. This database is publicly distributed under the name of SIGMA for Malaysian individuals. The experimental results are reported as both error forms, namely False Accept Rate (FAR) and False Reject Rate (FRR), which achieved up to 4.15% and 1.65% respectively. The overall successful accuracy is up to 97.1%. A comparison is also made that the proposed methodology outperforms the state-of-the-art works that are using the same SIGMA database.

Scopus Clarivate Crossref
View Publication Preview PDF
Quick Preview PDF
Publication Date
Sat Jun 28 2014
Journal Name
Iraqi Postgraduate Medical Journal
Comparism Between Transvaginal Cervical Length Measurement and Digital Examination in Prediction of Imminent preterm Delivery
...Show More Authors

BACKGROUND: Preterm labour is a major cause of perinatal morbidity and mortality, so it is important to predict preterm delivery using the clinical examination of the cervix and uterine contraction frequency. New markers for the prediction of preterm birth have been developed such as transvaginal ultrasound measurement of cervical length as this method is widely available. OBJECTIVE: To determine, whether transvaginal cervical length measurement predicts imminent preterm delivery better than digital cervical length measurement in women presented with preterm labour and intact membranes. PATIENTS AND METHODS: Two hundred women presented with preterm labour between 24 and 36+6 weeks of gestation were included in this study. All women subjecte

... Show More
View Publication
Publication Date
Fri Aug 20 2021
Journal Name
Iraqi Journal Of Laser
The Influence of No-Core Fiber Length on the Sensitivity in Fiber Optic Strain Sensor
...Show More Authors

The influence of sensing element length of no-core fiber strain sensor has been studied and experimentally demonstrated, four different lengths of 125 μm diameter no-core fiber is fused between two standard single-mode fibers and bi-directionally strained, the highest obtained sensitivity was around 16.37 pm με -1 which was exhibited in the shortest no-core fiber segment, to the best of our knowledge this is the first study of the influence of no-core fiber strain sensors length on sensor sensitivity. The proposed sensor can be used in many opto-mechanical applications such as, structural health monitoring, aerospace vehicles and airplane components monitoring.

View Publication Preview PDF
Publication Date
Sat Apr 01 2023
Journal Name
Baghdad Science Journal
Equilibrium, Kinetic, and Thermodynamic Study of Removing Methyl Orange Dye from Aqueous Solution Using Zizphus spina-christi Leaf Powder
...Show More Authors

In this study, Zizphus spina-christi leaf powder was applied for the adsorption of methyl orange. The effect of different operating parameters on the Batch Process adsorption was investigated such as solution pH (2-12), effect of contact time (0-60 min.), initial dye concentration (2-20 mg/L), effect of adsorbent dosage (0-4.5 g) and effect of temperature (20-50ᵒC). The results show a maximum removal rate and adsorption capacity (%R= 23.146, qe = 2.778 mg/g) at pH = 2 and equilibrium was reached at 40 min. The pseudo- second-order kinetics were found to be best fit for the removal process (R2 = 0.997). Different isotherm models (Langmuir, Freundlich, Dubini-Radushkevich,Temkin)  were applied in this stud

... Show More
View Publication Preview PDF
Scopus (3)
Scopus Crossref
Publication Date
Sun Mar 17 2019
Journal Name
Baghdad Science Journal
Geolocation Android Mobile Phones Using GSM/UMTS
...Show More Authors

The proliferation of cellular network enabled users through various positioning tools to track locations, location information is being continuously captured from mobile phones, created a prototype that enables detected location based on using the two invariant models for Global Systems for Mobile (GSM) and Universal Mobile Telecommunications System (UMTS). The smartphone application on an Android platform applies the location sensing run as a background process and the localization method is based on cell phones. The proposed application is associated with remote server and used to track a smartphone without permissions and internet. Mobile stored data location information in the database (SQLite), then transfer it into location AP

... Show More
View Publication Preview PDF
Scopus (4)
Crossref (1)
Scopus Clarivate Crossref
Publication Date
Sat Jun 01 2019
Journal Name
2019 International Symposium On Networks, Computers And Communications (isncc)
An Interference Mitigation Scheme for Millimetre Wave Heterogeneous Cloud Radio Access Network with Dynamic RRH Clustering
...Show More Authors

View Publication
Crossref (2)
Crossref
Publication Date
Sun May 01 2022
Journal Name
Optical Fiber Technology
Optical fiber sensor network integrating SAC-OCDMA and cladding modified optical fiber sensors coated with nanomaterial
...Show More Authors

View Publication
Scopus (13)
Crossref (13)
Scopus Clarivate Crossref
Publication Date
Sun Dec 02 2012
Journal Name
Baghdad Science Journal
Stability of Back Propagation Training Algorithm for Neural Networks
...Show More Authors

In this paper, we derive and prove the stability bounds of the momentum coefficient µ and the learning rate ? of the back propagation updating rule in Artificial Neural Networks .The theoretical upper bound of learning rate ? is derived and its practical approximation is obtained

View Publication Preview PDF
Crossref
Publication Date
Thu Sep 01 2016
Journal Name
Journal Of Engineering
Calculating the Transport Density Index from Some of the Productivity Indicators for Railway Lines by Using Neural Networks
...Show More Authors

The efficiency evaluation of the railway lines performance is done through a set of indicators and criteria, the most important are transport density, the productivity of enrollee, passenger vehicle production, the productivity of freight wagon, and the productivity of locomotives. This study includes an attempt to calculate the most important of these indicators which transport density index from productivity during the four indicators, using artificial neural network technology. Two neural networks software are used in this study, (Simulnet) and (Neuframe), the results of second program has been adopted. Training results and test to the neural network data used in the study, which are obtained from the international in

... Show More
View Publication Preview PDF
Publication Date
Thu Mar 31 2022
Journal Name
Iraqi Geological Journal
Development of New Models to Determine the Rheological Parameters of Water-Based Drilling Fluid using Artificial Neural Networks
...Show More Authors

It is well known that drilling fluid is a key parameter for optimizing drilling operations, cleaning the hole, and managing the rig hydraulics and margins of surge and swab pressures. Although the experimental works represent valid and reliable results, they are expensive and time consuming. In contrast, continuous and regular determination of the rheological fluid properties can perform its essential functions during good construction. The aim of this study is to develop empirical models to estimate the drilling mud rheological properties of water-based fluids with less need for lab measurements. This study provides two predictive techniques, multiple regression analysis and artificial neural networks, to determine the rheological

... Show More
Crossref
Publication Date
Tue Jun 21 2022
Journal Name
Journal Of Planner And Development
Enviromental impact assessment of cement industry using Leopold Matrix
...Show More Authors

The assessment of the environmental impact of the cement industry using the Leopold Matrix is ​​to determine the negative and positive impacts on the environment resulting from this industry, and what are the long-term and short-term effects, direct and indirect, and the amount of these effects and potential risks, and that this evaluation process is done through a number of methods, including Matrix method, including (Leopold).

 

The importance of the research because the cement occupies is of great importance in the world, especially in our country, Iraq, in the sector of construction and modernity, and the toxic emissions and solid waste produced by the production of this material. <

... Show More
View Publication Preview PDF