Offline handwritten signature is a type of behavioral biometric-based on an image. Its problem is the accuracy of the verification because once an individual signs, he/she seldom signs the same signature. This is referred to as intra-user variability. This research aims to improve the recognition accuracy of the offline signature. The proposed method is presented by using both signature length normalization and histogram orientation gradient (HOG) for the reason of accuracy improving. In terms of verification, a deep-learning technique using a convolution neural network (CNN) is exploited for building the reference model for a future prediction. Experiments are conducted by utilizing 4,000 genuine as well as 2,000 skilled forged signature samples collected from 200 individuals. This database is publicly distributed under the name of SIGMA for Malaysian individuals. The experimental results are reported as both error forms, namely False Accept Rate (FAR) and False Reject Rate (FRR), which achieved up to 4.15% and 1.65% respectively. The overall successful accuracy is up to 97.1%. A comparison is also made that the proposed methodology outperforms the state-of-the-art works that are using the same SIGMA database.
KE Sharquie, MM Al-Waiz, AA Noaimi, Iraqi Postgraduate Medical Journal, 2008 - Cited by 1
plaque forming assay was used enumerate the number of plaque forming cells of anti-HBc in eight patintes with chronic hepatitis and eight health
A new distribution, the Epsilon Skew Gamma (ESΓ ) distribution, which was first introduced by Abdulah [1], is used on a near Gamma data. We first redefine the ESΓ distribution, its properties, and characteristics, and then we estimate its parameters using the maximum likelihood and moment estimators. We finally use these estimators to fit the data with the ESΓ distribution
In this paper, a new class of nonconvex sets and functions called strongly -convex sets and strongly -convex functions are introduced. This class is considered as a natural extension of strongly -convex sets and functions introduced in the literature. Some basic and differentiability properties related to strongly -convex functions are discussed. As an application to optimization problems, some optimality properties of constrained optimization problems are proved. In these optimization problems, either the objective function or the inequality constraints functions are strongly -convex.
Nitrogen (N) fertilizer rate is important for high yield and good quality of potato tubers. In this dissertation, I seek to study the response of different potato cultivars under different N fertilizer rates and how that can impact tuber quality, examine the performance of active optical sensors in improving a potato yield prediction algorithm, and evaluate the ability of active optical sensors (GreenSeeker (GS) and Crop Circle (CC)) to optimize a N recommendation algorithm that can be used by potato growers in Maine. This research was conducted at 11 sites over a period of two years (2018–2019) in Aroostook County, Maine; all sites depended on a rainfed system. Three potato cultivars, Russet Burbank, Superior, and Shepody, were planted u
... Show Morethe physical paraneters of oxadizole derivaties as donor molecules have been measured the charge transfer and methanol as solvent have been estimated from the electonic spectra