Preferred Language
Articles
/
bsj-6117
Offline Signature Biometric Verification with Length Normalization using Convolution Neural Network
...Show More Authors

Offline handwritten signature is a type of behavioral biometric-based on an image. Its problem is the accuracy of the verification because once an individual signs, he/she seldom signs the same signature. This is referred to as intra-user variability. This research aims to improve the recognition accuracy of the offline signature. The proposed method is presented by using both signature length normalization and histogram orientation gradient (HOG) for the reason of accuracy improving. In terms of verification, a deep-learning technique using a convolution neural network (CNN) is exploited for building the reference model for a future prediction. Experiments are conducted by utilizing 4,000 genuine as well as 2,000 skilled forged signature samples collected from 200 individuals. This database is publicly distributed under the name of SIGMA for Malaysian individuals. The experimental results are reported as both error forms, namely False Accept Rate (FAR) and False Reject Rate (FRR), which achieved up to 4.15% and 1.65% respectively. The overall successful accuracy is up to 97.1%. A comparison is also made that the proposed methodology outperforms the state-of-the-art works that are using the same SIGMA database.

Scopus Clarivate Crossref
View Publication Preview PDF
Quick Preview PDF
Publication Date
Tue Dec 31 2024
Journal Name
Iraqi Geological Journal
Geomechanical Modeling and Artificial Neural Network Technique for Predicting Breakout Failure in Nasiriyah Oilfield
...Show More Authors

Wellbore instability is one of the major issues observed throughout the drilling operation. Various wellbore instability issues may occur during drilling operations, including tight holes, borehole collapse, stuck pipe, and shale caving. Rock failure criteria are important in geomechanical analysis since they predict shear and tensile failures. A suitable failure criterion must match the rock failure, which a caliper log can detect to estimate the optimal mud weight. Lack of data makes certain wells' caliper logs unavailable. This makes it difficult to validate the performance of each failure criterion. This paper proposes an approach for predicting the breakout zones in the Nasiriyah oil field using an artificial neural network. It

... Show More
View Publication Preview PDF
Scopus (2)
Scopus Crossref
Publication Date
Fri Dec 01 2023
Journal Name
Iop Conference Series: Earth And Environmental Science
Relationship Study Between Total Length with Otolith Length and Thickness in Two Fish Species: Coptodon zillii (Gervais,1848) and Cyprinus carpio” (Linnaeus,1758)
...Show More Authors
Abstract<p>This study aimed new indications that may clarify the relationships between the total and standard lengths, and the length of the otolith, as well as the thickness and weight of these bones compared to the body weights of two different species of invasive fish in the Iraqi aquatic environment, the common carp <italic>Cyprinus carpio</italic> of the Cyprinidae family, and the common Tilapia. <italic>Coptodon zillii</italic>, from the Cichlidae family. The results showed that the otolith were not related to some of the vital characteristics of the studied fish, and there were differences in the correlation coefficient between some vital measurements with high signifi</p> ... Show More
View Publication Preview PDF
Scopus (1)
Crossref (1)
Scopus Crossref
Publication Date
Sun Dec 31 2023
Journal Name
International Journal On Technical And Physical Problems Of Engineering
A Multiple System Biometric System Based on ECG Data
...Show More Authors

A Multiple System Biometric System Based on ECG Data

Scopus
Publication Date
Sun Apr 01 2007
Journal Name
Journal Of Educational And Psychological Researches
الذاكرة الصورية وعلاقتها بتلميحات الأسترجاع
...Show More Authors

مشكلة البحث:

     تعد الوسائل التي تساعد في استرجاع الخبرات والمعلومات المختلفة من الموضوعات المهمة في بحوث الذاكرة ، وذلك لان امكانية تذكر كلما يتعلمه ويراه الانسان يكاد ان يكون من الامور النادرة والصعبة التحقيق ، وبالتالي فقد ركز عديد من الباحثين في بحوثهم على البحث عن افضل الوسائل التي يمكن ان تساعد الفرد على استرجاع الخبرات المختلفة مهما بلغت مستوى من الصعوبة او التعقيد او العمق ، فتلك

... Show More
View Publication Preview PDF
Publication Date
Tue Mar 30 2021
Journal Name
Baghdad Science Journal
Investigating the Sensitivity Effect of Actuarial Assumptions on Pension Liabilities in Malaysia
...Show More Authors

Malaysia will be an ageing population by 2030 as the number of those aged 60 years and above has increased drastically from 6.2 percent in 2000 and is expected to reach 13.6 percent by 2030. There are many challenges that will be faced due to the ageing population, one of which is the increasing cost of pensions in the future. In view of that, it is necessary to investigate the effect of actuarial assumptions on pension liabilities under the perspective of ageing. To estimate the pension liabilities, the Projected Unit Credit method is used in the study and commutation functions are employed in the process. Demographic risk and salary risk have been identified as major risks in analyzing pension liabilities in this study. The sensitivity

... Show More
View Publication Preview PDF
Scopus (4)
Crossref (3)
Scopus Clarivate Crossref
Publication Date
Sun May 01 2016
Journal Name
Journal Of Engineering
Prediction of Ryznar Index for the treated water from WTPs on Al-Karakh side of Baghdad City using Artificial Neural Network (ANN) technique
...Show More Authors

In this research an Artificial Neural Network (ANN) technique was applied for the prediction of Ryznar Index (RI) of the flowing water from WTPs in Al-Karakh side (left side) in Baghdad city for year 2013. Three models (ANN1, ANN2 and ANN3) have been developed and tested using data from Baghdad Mayoralty (Amanat Baghdad) including drinking water quality for the period 2004 to 2013. The results indicate that it is quite possible to use an artificial neural networks in predicting the stability index (RI) with a good degree of accuracy. Where ANN 2 model could be used to predict RI for the effluents from Al-Karakh, Al-Qadisiya and Al-Karama WTPs as the highest correlation coefficient were obtained 92.4, 82.9 and 79.1% respectively. For

... Show More
Publication Date
Sat Dec 01 2012
Journal Name
Journal Of Economics And Administrative Sciences
Using Benford’s Law to detect Financial Fraud
...Show More Authors

Fraud Includes acts involving the exercise of deception by multiple parties inside and outside companies in order to obtain economic benefits against the harm to those companies, as they are to commit fraud upon the availability of three factors which represented by the existence of opportunities, motivation, and rationalization. Fraud detecting require necessity of indications the possibility of its existence. Here, Benford’s law can play an important role in direct the light towards the possibility of the existence of financial fraud in the accounting records of the company, which provides the required effort and time for detect fraud and prevent it.

View Publication Preview PDF
Crossref (1)
Crossref
Publication Date
Fri Jul 01 2011
Journal Name
Engineering And Technology Journal
Off-Line Arabic Signature Recognition Based on Invariant Moments Properties
...Show More Authors

View Publication
Crossref (1)
Crossref
Publication Date
Mon May 01 2023
Journal Name
Ain Shams Engineering Journal
Neural network modeling of rutting performance for sustainable asphalt mixtures modified by industrial waste alumina
...Show More Authors

Scopus (18)
Crossref (11)
Scopus Clarivate Crossref
Publication Date
Thu Oct 13 2022
Journal Name
Computation
A Pattern-Recognizer Artificial Neural Network for the Prediction of New Crescent Visibility in Iraq
...Show More Authors

Various theories have been proposed since in last century to predict the first sighting of a new crescent moon. None of them uses the concept of machine and deep learning to process, interpret and simulate patterns hidden in databases. Many of these theories use interpolation and extrapolation techniques to identify sighting regions through such data. In this study, a pattern recognizer artificial neural network was trained to distinguish between visibility regions. Essential parameters of crescent moon sighting were collected from moon sight datasets and used to build an intelligent system of pattern recognition to predict the crescent sight conditions. The proposed ANN learned the datasets with an accuracy of more than 72% in comp

... Show More
View Publication Preview PDF
Scopus (7)
Crossref (5)
Scopus Clarivate Crossref