Offline handwritten signature is a type of behavioral biometric-based on an image. Its problem is the accuracy of the verification because once an individual signs, he/she seldom signs the same signature. This is referred to as intra-user variability. This research aims to improve the recognition accuracy of the offline signature. The proposed method is presented by using both signature length normalization and histogram orientation gradient (HOG) for the reason of accuracy improving. In terms of verification, a deep-learning technique using a convolution neural network (CNN) is exploited for building the reference model for a future prediction. Experiments are conducted by utilizing 4,000 genuine as well as 2,000 skilled forged signature samples collected from 200 individuals. This database is publicly distributed under the name of SIGMA for Malaysian individuals. The experimental results are reported as both error forms, namely False Accept Rate (FAR) and False Reject Rate (FRR), which achieved up to 4.15% and 1.65% respectively. The overall successful accuracy is up to 97.1%. A comparison is also made that the proposed methodology outperforms the state-of-the-art works that are using the same SIGMA database.
In this paper, we designed a new efficient stream cipher cryptosystem that depend on a chaotic map to encrypt (decrypt) different types of digital images. The designed encryption system passed all basic efficiency criteria (like Randomness, MSE, PSNR, Histogram Analysis, and Key Space) that were applied to the key extracted from the random generator as well as to the digital images after completing the encryption process.
There are many images you need to large Khoznah space With the continued evolution of storage technology for computers, there is a need nailed required to reduce Alkhoznip space for pictures and image compression in a good way, the conversion method Alamueja
This paper presents the results of experimental investigations to predict the bearing capacity of square footing on geogrid-reinforced loose sand by performing model tests. The effects of several parameters were studied in order to study the general behavior of improving the soil by using the geogrid. These parameters include the eccentricity value, depth of first layer of reinforcement, and vertical spacing of reinforcement layers. The results of the experimental work indicated that there was an optimum reinforcement embedment depth at which the bearing capacity was the highest when single-layer reinforcement was used. The increase of (z/B) (vertical spacing of reinforcement layer/width of footing) above 1.5 has no effect on the re
... Show MoreGypseous soils are common in several regions in the world including Iraq, where more than 28.6% of its surface is covered with this type of soil. This soil, with high gypsum content, causes different problems for construction and strategic projects. As a result of water flow through the soil mass, the permeability and chemical arrangement of these soils varies with time due to the solubility and leaching of gypsum. In this study, the soil of 36% gypsum content, was taken from one location about 100 km southwest of Baghdad, where the samples were taken from depths (0.5 - 1) m below the natural ground and mixed with (3%, 6%, 9%) of Copolymer and Novolac polymer to improve the engineering properties that include: collapsibility, perm
... Show MoreMany academics have concentrated on applying machine learning to retrieve information from databases to enable researchers to perform better. A difficult issue in prediction models is the selection of practical strategies that yield satisfactory forecast accuracy. Traditional software testing techniques have been extended to testing machine learning systems; however, they are insufficient for the latter because of the diversity of problems that machine learning systems create. Hence, the proposed methodologies were used to predict flight prices. A variety of artificial intelligence algorithms are used to attain the required, such as Bayesian modeling techniques such as Stochastic Gradient Descent (SGD), Adaptive boosting (ADA), Decision Tre
... Show MoreIn this paper, An application of non-additive measures for re-evaluating the degree of importance of some student failure reasons has been discussed. We apply non-additive fuzzy integral model (Sugeno, Shilkret and Choquet) integrals for some expected factors which effect student examination performance for different students' cases.
This research was aimed to study the osmotic efficiency of the draw solutions and the factors affecting the performance of forward osmosis process : The draw solutions used were magnesium sulfate hydrate (MgSO4.7H2O) pojtassium chloride (KCL), calcium chloride (CaCl2) and ammonium bicarbonate (NH4HCO3). It was found that water flux increases with increasing draw solution concentration, and feed solution flow rate and decreases with increasing draw solution flow rate and feed solution concentration. And also found that the efficiency of the draw solutions is in the following order:
CaCl2> KCI > NH4HCO3> MgSO4.7H