Preferred Language
Articles
/
bsj-6108
New and Existing Approaches Reviewing of Big Data Analysis with Hadoop Tools
...Show More Authors

Everybody is connected with social media like (Facebook, Twitter, LinkedIn, Instagram…etc.) that generate a large quantity of data and which traditional applications are inadequate to process. Social media are regarded as an important platform for sharing information, opinion, and knowledge of many subscribers. These basic media attribute Big data also to many issues, such as data collection, storage, moving, updating, reviewing, posting, scanning, visualization, Data protection, etc. To deal with all these problems, this is a need for an adequate system that not just prepares the details, but also provides meaningful analysis to take advantage of the difficult situations, relevant to business, proper decision, Health, social media, science, telecommunications, the environment, etc. Authors notice through reading of previous studies that there are different analyzes through HADOOP and its various tools such as the sentiment in real-time and others. However, dealing with this Big data is a challenging task. Therefore, such type of analysis is more efficiently possible only through the Hadoop Ecosystem. The purpose of this paper is to analyze literature related analysis of big data of social media using the Hadoop framework for knowing almost analysis tools existing in the world under the Hadoop umbrella and its orientations in addition to difficulties and modern methods of them to overcome challenges of big data in offline and real –time processing. Real-time Analytics accelerates decision-making along with providing access to business metrics and reporting. Comparison between Hadoop and spark has been also illustrated.

Scopus Clarivate Crossref
View Publication Preview PDF
Quick Preview PDF
Publication Date
Mon Sep 01 2008
Journal Name
Journal Of Economics And Administrative Sciences
تحديد القيم الشاذة باستخدام الطرق الاستكشافية ومقارنتها مع الطرق المعلمية
...Show More Authors

         The availability of statistical data plays an important role in planning process. The importance of this research which deals with safety of statistical data from errors and outliers values. The Objective of this study is to determine the outlier values in statistical data by using modern exploratory data methods and comparing them with parametric methods. The research has been divided into four chapters ,the main important conclusions reached are:1-The exploratory methods and the parametric methods showed variation between them in determining the outlier values in the data.

2-The study showed that the box plot method was the best method used in determining

... Show More
View Publication Preview PDF
Crossref
Publication Date
Fri Jul 01 2016
Journal Name
Al–bahith Al–a'alami
A Semiotic Approach to the Analysis of the News Story
...Show More Authors

This study attempts to provide an approach analysis for the news, depending on the bases and principles which conceptuality semiotic researchers of this field first of them «A. J. Gremas» for the theory of «narrative discourse analysis», to more clarify we tried to apply it on a published press- news, to concludes the most important steps and methods that are necessary to follows gain more understanding of the press- news.

View Publication Preview PDF
Publication Date
Sat Jul 01 2017
Journal Name
2017 Computing Conference
Protecting a sensitive dataset using a time based password in big data
...Show More Authors

View Publication
Crossref (1)
Crossref
Publication Date
Wed Aug 01 2018
Journal Name
Journal Of Economics And Administrative Sciences
Compare to the conditional logistic regression models with fixed and mixed effects for longitudinal data
...Show More Authors

Mixed-effects conditional logistic regression is evidently more effective in the study of qualitative differences in longitudinal pollution data as well as their implications on heterogeneous subgroups. This study seeks that conditional logistic regression is a robust evaluation method for environmental studies, thru the analysis of environment pollution as a function of oil production and environmental factors. Consequently, it has been established theoretically that the primary objective of model selection in this research is to identify the candidate model that is optimal for the conditional design. The candidate model should achieve generalizability, goodness-of-fit, parsimony and establish equilibrium between bias and variab

... Show More
View Publication Preview PDF
Crossref
Publication Date
Mon Jan 01 2024
Journal Name
Journal Of Business, Communication & Technology
Exploring the Adoption of Big Data Analytics in the Oil and Gas Industry: A Case Study
...Show More Authors

The oil and gas industry relies heavily on IT innovations to manage business processes, but the exponential generation of data has led to concerns about processing big data, generating valuable insights, and making timely decisions. Many companies have adopted Big Data Analytics (BDA) solutions to address these challenges. However, determining the adoption of BDA solutions requires a thorough understanding of the contextual factors influencing these decisions. This research explores these factors using a new Technology-Organisation-Environment (TOE) framework, presenting technological, organisational, and environmental factors. The study used a Delphi research method and seven heterogeneous panelists from an Oman oil and gas company

... Show More
View Publication Preview PDF
Crossref
Publication Date
Tue Jan 01 2019
Journal Name
Advances On Computational Intelligence In Energy
A Theoretical Framework for Big Data Analytics Based on Computational Intelligent Algorithms with the Potential to Reduce Energy Consumption
...Show More Authors

Within the framework of big data, energy issues are highly significant. Despite the significance of energy, theoretical studies focusing primarily on the issue of energy within big data analytics in relation to computational intelligent algorithms are scarce. The purpose of this study is to explore the theoretical aspects of energy issues in big data analytics in relation to computational intelligent algorithms since this is critical in exploring the emperica aspects of big data. In this chapter, we present a theoretical study of energy issues related to applications of computational intelligent algorithms in big data analytics. This work highlights that big data analytics using computational intelligent algorithms generates a very high amo

... Show More
View Publication
Scopus (1)
Scopus Crossref
Publication Date
Wed Mar 18 2020
Journal Name
Baghdad Science Journal
A Hybrid Method of Linguistic and Statistical Features for Arabic Sentiment Analysis
...Show More Authors

          Sentiment analysis refers to the task of identifying polarity of positive and negative for particular text that yield an opinion. Arabic language has been expanded dramatically in the last decade especially with the emergence of social websites (e.g. Twitter, Facebook, etc.). Several studies addressed sentiment analysis for Arabic language using various techniques. The most efficient techniques according to the literature were the machine learning due to their capabilities to build a training model. Yet, there is still issues facing the Arabic sentiment analysis using machine learning techniques. Such issues are related to employing robust features that have the ability to discrimina

... Show More
View Publication Preview PDF
Scopus (18)
Crossref (6)
Scopus Clarivate Crossref
Publication Date
Wed Mar 10 2021
Journal Name
Baghdad Science Journal
Compression-based Data Reduction Technique for IoT Sensor Networks
...Show More Authors

Energy savings are very common in IoT sensor networks because IoT sensor nodes operate with their own limited battery. The data transmission in the IoT sensor nodes is very costly and consume much of the energy while the energy usage for data processing is considerably lower. There are several energy-saving strategies and principles, mainly dedicated to reducing the transmission of data. Therefore, with minimizing data transfers in IoT sensor networks, can conserve a considerable amount of energy. In this research, a Compression-Based Data Reduction (CBDR) technique was suggested which works in the level of IoT sensor nodes. The CBDR includes two stages of compression, a lossy SAX Quantization stage which reduces the dynamic range of the

... Show More
View Publication Preview PDF
Scopus (40)
Crossref (27)
Scopus Clarivate Crossref
Publication Date
Thu Feb 01 2024
Journal Name
Baghdad Science Journal
Estimating the Parameters of Exponential-Rayleigh Distribution for Progressively Censoring Data with S- Function about COVID-19
...Show More Authors

The two parameters of Exponential-Rayleigh distribution were estimated using the maximum likelihood estimation method (MLE) for progressively censoring data. To find estimated values for these two scale parameters using real data for COVID-19 which was taken from the Iraqi Ministry of Health and Environment, AL-Karkh General Hospital. Then the Chi-square test was utilized to determine if the sample (data) corresponded with the Exponential-Rayleigh distribution (ER). Employing the nonlinear membership function (s-function) to find fuzzy numbers for these parameters estimators. Then utilizing the ranking function transforms the fuzzy numbers into crisp numbers. Finally, using mean square error (MSE) to compare the outcomes of the survival

... Show More
View Publication Preview PDF
Scopus (1)
Scopus Crossref
Publication Date
Sat Sep 30 2023
Journal Name
Journal Of Accounting And Financial Studies ( Jafs )
The impact of marketing tools on the legal liquidity index : an applied research in the International Development Bank for Investment and Finance
...Show More Authors

Abstract

               The main problem of the study lies in the lack of a clear perception among the study sample about the impact of digital marketing tools on legal liquidity. Legal) of the International Development Bank for Investment and Finance and to achieve the objectives of the research, the method of observation and survey was used in measuring the dimensions of digital marketing. As for banking liquidity, the reports and financial statements of the bank were used as the research sample, as well as the use of the statistical analysis program SPSS in the statement of the relationship The study concluded, in summary, the following: Mar

... Show More
View Publication Preview PDF