The transmitting and receiving of data consume the most resources in Wireless Sensor Networks (WSNs). The energy supplied by the battery is the most important resource impacting WSN's lifespan in the sensor node. Therefore, because sensor nodes run from their limited battery, energy-saving is necessary. Data aggregation can be defined as a procedure applied for the elimination of redundant transmissions, and it provides fused information to the base stations, which in turn improves the energy effectiveness and increases the lifespan of energy-constrained WSNs. In this paper, a Perceptually Important Points Based Data Aggregation (PIP-DA) method for Wireless Sensor Networks is suggested to reduce redundant data before sending them to the sink. By utilizing Intel Berkeley Research Lab (IBRL) dataset, the efficiency of the proposed method was measured. The experimental findings illustrate the benefits of the proposed method as it reduces the overhead on the sensor node level up to 1.25% in remaining data and reduces the energy consumption up to 93% compared to prefix frequency filtering (PFF) and ATP protocols.
Photonic Crystal Fiber Fabry–Perot Interferometers (FPI) based on Surface Plasmon Resonance (SPR) was investigated in this paper in order to detect changes in photonic crystal fiber sensitivity with increasing temperature. FPI is composed of a PCF (ESM-12) solid core spliced with a single-mode fiber (SMF) on one side and a 40nm thick gold Nano film on the other. In order to obtain the SPR curve, the end of PCF can be spliced with the side of SMF before covering the gold film on the PCF. SPR results are included in the suggested sensor, based on the conclusions of the investigations. Resolution (R) is 0.0871, Signal-to-Noise Ratio (SNR) is 0.1867, a figure of merit (FOM) is 0.0069, and sensitivity (S) is 1.1481 . This sensor proposed is s
... Show MoreA comparative investigation of gas sensing properties of SnO2 doped with WO3 based on thin film and bulk forms was achieved. Thin films were deposited by thermal evaporation technique on glass substrates. Bulk sensors in the shape of pellets were prepared by pressing SnO2:WO3 powder. The polycrystalline nature of the obtained films with tetragonal structure was confirmed by X-ray diffraction. The calculated crystalline size was 52.43 nm. Thickness of the prepared films was found 134 nm. The optical characteristics of the thin films were studied by using UV-VIS Spectrophotometer in the wavelength range 200 nm to 1100 nm, the energy band gap, extinction coefficient and refractive index of the thin film were 2.5 eV , 0.024 and 2.51, respective
... Show MoreOver the years, the prediction of penetration rate (ROP) has played a key rule for drilling engineers due it is effect on the optimization of various parameters that related to substantial cost saving. Many researchers have continually worked to optimize penetration rate. A major issue with most published studies is that there is no simple model currently available to guarantee the ROP prediction.
The main objective of this study is to further improve ROP prediction using two predictive methods, multiple regression analysis (MRA) and artificial neural networks (ANNs). A field case in SE Iraq was conducted to predict the ROP from a large number of parame
An adaptive nonlinear neural controller to reduce the nonlinear flutter in 2-D wing is proposed in the paper. The nonlinearities in the system come from the quasi steady aerodynamic model and torsional spring in pitch direction. Time domain simulations are used to examine the dynamic aero elastic instabilities of the system (e.g. the onset of flutter and limit cycle oscillation, LCO). The structure of the controller consists of two models :the modified Elman neural network (MENN) and the feed forward multi-layer Perceptron (MLP). The MENN model is trained with off-line and on-line stages to guarantee that the outputs of the model accurately represent the plunge and pitch motion of the wing and this neural model acts as the identifier. Th
... Show MoreFace Identification is an important research topic in the field of computer vision and pattern recognition and has become a very active research area in recent decades. Recently multiwavelet-based neural networks (multiwavenets) have been used for function approximation and recognition, but to our best knowledge it has not been used for face Identification. This paper presents a novel approach for the Identification of human faces using Back-Propagation Adaptive Multiwavenet. The proposed multiwavenet has a structure similar to a multilayer perceptron (MLP) neural network with three layers, but the activation function of hidden layer is replaced with multiscaling functions. In experiments performed on the ORL face database it achieved a
... Show MoreThis search has introduced the techniques of multi-wavelet transform and neural network for recognition 3-D object from 2-D image using patches. The proposed techniques were tested on database of different patches features and the high energy subband of discrete multi-wavelet transform DMWT (gp) of the patches. The test set has two groups, group (1) which contains images, their (gp) patches and patches features of the same images as a part of that in the data set beside other images, (gp) patches and features, and group (2) which contains the (gp) patches and patches features the same as a part of that in the database but after modification such as rotation, scaling and translation. Recognition by back propagation (BP) neural network as com
... Show MoreThe historical center's landscape suffers from neglect, despite their importance and broad capabilities in enhancing the cultural value of the historical center, as landscape includes many heterogeneous human and non-human components, material and immaterial, natural and manufactured, also different historical layers, ancient, modern and contemporary. Due to the difference in these components and layers, it has become difficult for the designer to deal with it. Therefore, the research was directed by following a methodology of actor-network theory as it deals with such a complex system and concerned with an advanced method to connect the various components of considering landscape as a ground that can include various elements and deal wi
... Show MoreThis study came for the reason that some project administrations still do not follow the appropriate scientific methods that enable them to perform their work in a manner that achieves the goals for which those projects arise, in addition to exceeding the planned times and costs, so this study aims to apply the methods of network diagrams in Planning, scheduling and monitoring the project of constructing an Alzeuot intersection bridge in the city of Ramadi, as the research sample, being one of the strategic projects that are being implemented in the city of Ramadi, as well as being one of the projects that faced during its implementation Several of problems, the project problem was studied according to scientific methods through the applica
... Show MoreIn recent years, there has been expanding development in the vehicular part and the number of vehicles moving on the roads in all the sections of the country. Arabic vehicle number plate identification based on image processing is a dynamic area of this work; this technique is used for security purposes such as tracking of stolen cars and access control to restricted areas. The License Plate Recognition System (LPRS) exploits a digital camera to capture vehicle plate numbers is used as input to the proposed recognition system. Basically, the proposed system consists of three phases, vehicle license plate localization, character segmentation, and character recognition, the
... Show MoreIn this study, multi-objective optimization of nanofluid aluminum oxide in a mixture of water and ethylene glycol (40:60) is studied. In order to reduce viscosity and increase thermal conductivity of nanofluids, NSGA-II algorithm is used to alter the temperature and volume fraction of nanoparticles. Neural network modeling of experimental data is used to obtain the values of viscosity and thermal conductivity on temperature and volume fraction of nanoparticles. In order to evaluate the optimization objective functions, neural network optimization is connected to NSGA-II algorithm and at any time assessment of the fitness function, the neural network model is called. Finally, Pareto Front and the corresponding optimum points are provided and
... Show More