After the outbreak of COVID-19, immediately it converted from epidemic to pandemic. Radiologic images of CT and X-ray have been widely used to detect COVID-19 disease through observing infrahilar opacity in the lungs. Deep learning has gained popularity in diagnosing many health diseases including COVID-19 and its rapid spreading necessitates the adoption of deep learning in identifying COVID-19 cases. In this study, a deep learning model, based on some principles has been proposed for automatic detection of COVID-19 from X-ray images. The SimpNet architecture has been adopted in our study and trained with X-ray images. The model was evaluated on both binary (COVID-19 and No-findings) classification and multi-class (COVID-19, No-findings, and Pneumonia) classification tasks. Our model has achieved an accuracy value of 98.4% for binary and 93.8% for the multi-class classification. The number of parameters of our model is 11 Million parameters which are fewer than some state-of-the-art methods with achieving higher results.
In this study, a traumatic spinal cord injury (TSCI) classification system is proposed using a convolutional neural network (CNN) technique with automatically learned features from electromyography (EMG) signals for a non-human primate (NHP) model. A comparison between the proposed classification system and a classical classification method (k-nearest neighbors, kNN) is also presented. Developing such an NHP model with a suitable assessment tool (i.e., classifier) is a crucial step in detecting the effect of TSCI using EMG, which is expected to be essential in the evaluation of the efficacy of new TSCI treatments. Intramuscular EMG data were collected from an agonist/antagonist tail muscle pair for the pre- and post-spinal cord lesi
... Show MoreThe research aimed mainly to discover the effectiveness of the (PEOE) model in teaching science to develop the skills of generating and evaluating information and the emotional side of the scientific sense of the intermediate first grade students. An experimental approach with a quasi-experimental design called pre-test and post-test control design was used. The research sample consisted of (60) students, who were selected in a random cluster method, (30) students in the experimental group studied the unit "The Nature of Material" using the (PEOE) model, and (30) students in the control group studied according to the prevailing method of teaching. The research materials and tools were represented in: a teacher's guide for teaching the un
... Show MoreThe most popular medium that being used by people on the internet nowadays is video streaming. Nevertheless, streaming a video consumes much of the internet traffics. The massive quantity of internet usage goes for video streaming that disburses nearly 70% of the internet. Some constraints of interactive media might be detached; such as augmented bandwidth usage and lateness. The need for real-time transmission of video streaming while live leads to employing of Fog computing technologies which is an intermediary layer between the cloud and end user. The latter technology has been introduced to alleviate those problems by providing high real-time response and computational resources near to the
... Show MoreAnal fistula is an anorectal condition with over 90% of cases being
cryptoglandular in origin and occurring after anorectal abscesses. The traditional method of
treatment of an anal fistula is by excision or de roofing the tract awaiting complete healing.. Aim:
The aim of this study is to assess the efficacy of diode laser 980 nm in the treatment of low fistula in
ano. Methods: The study was performed between June 2019 to end of September 2019, at the
institute of laser for postgraduate study in Baghdad university. A cohort of ten male patients with a
provisional diagnosis of low type anal fistula were selected for this study and treated by interstitial
photothermal therapy of fistula epithelium by diode laser 980nm
Wireless Sensor Networks (WSNs) are promoting the spread of the Internet for devices in all areas of
life, which makes it is a promising technology in the future. In the coming days, as attack technologies become
more improved, security will have an important role in WSN. Currently, quantum computers pose a significant
risk to current encryption technologies that work in tandem with intrusion detection systems because it is
difficult to implement quantum properties on sensors due to the resource limitations. In this paper, quantum
computing is used to develop a future-proof, robust, lightweight and resource-conscious approach to sensor
networks. Great emphasis is placed on the concepts of using the BB8
Honeywords are fake passwords that serve as an accompaniment to the real password, which is called a “sugarword.” The honeyword system is an effective password cracking detection system designed to easily detect password cracking in order to improve the security of hashed passwords. For every user, the password file of the honeyword system will have one real hashed password accompanied by numerous fake hashed passwords. If an intruder steals the password file from the system and successfully cracks the passwords while attempting to log in to users’ accounts, the honeyword system will detect this attempt through the honeychecker. A honeychecker is an auxiliary server that distinguishes the real password from the fake passwords and t
... Show MoreFounding a System to secure deposits and protecting the depositors is considered one of the important and exchanged subjects out there in the banking system/field in Iraq at the current time, and the reason behind the exchange and spread of this subject is due to the financial crisis of which the banking sector is suffering from and the stumbling of many banks, those factors have had led to the insecurity of the depositors and their mistrust towards banks, thus, it is necessary to create a system to secure deposits in which depositors would be compensated for the losses caused by the banks' failures. in addition, it could be a countermeasure system which maintains the banking stability, protects the rights of depositors and gains
... Show MoreIn this paper, we propose an approach to estimate the induced potential, which is generated by swift heavy ions traversing a ZnO thin film, via an energy loss function (ELF). This induced potential is related to the projectile charge density, ρq(k) and is described by the extended Drude dielectric function. At zero momentum transfer, the resulting ELF exhibits good agreement with the previously reported results. The ELF, obtained by the extended Drude model, displays a realistic behavior over the Bethe ridge. It is observed that the induced potential relies on the heavy ion velocity and charge state q. Further, the numerical results show that the induced potential for neutral H, as projectile, dominates when the heavy ion velocity is less
... Show MoreA Novel artificial neural network (ANN) model was constructed for calibration of a multivariate model for simultaneously quantitative analysis of the quaternary mixture composed of carbamazepine, carvedilol, diazepam, and furosemide. An eighty-four mixing formula where prepared and analyzed spectrophotometrically. Each analyte was formulated in six samples at different concentrations thus twentyfour samples for the four analytes were tested. A neural network of 10 hidden neurons was capable to fit data 100%. The suggested model can be applied for the quantitative chemical analysis for the proposed quaternary mixture.