After the outbreak of COVID-19, immediately it converted from epidemic to pandemic. Radiologic images of CT and X-ray have been widely used to detect COVID-19 disease through observing infrahilar opacity in the lungs. Deep learning has gained popularity in diagnosing many health diseases including COVID-19 and its rapid spreading necessitates the adoption of deep learning in identifying COVID-19 cases. In this study, a deep learning model, based on some principles has been proposed for automatic detection of COVID-19 from X-ray images. The SimpNet architecture has been adopted in our study and trained with X-ray images. The model was evaluated on both binary (COVID-19 and No-findings) classification and multi-class (COVID-19, No-findings, and Pneumonia) classification tasks. Our model has achieved an accuracy value of 98.4% for binary and 93.8% for the multi-class classification. The number of parameters of our model is 11 Million parameters which are fewer than some state-of-the-art methods with achieving higher results.
Image of landsate-7 taken by thematic mapper was used and classified using supervised method. Results of supervised classification indicated presence of nine land cover classes. Salt-soils class shows the highest reflectance value while water bodies' class shows the lowest values. Also the results indicated that soil properties show different effects on reflectance. There was a high significant positive relation of carbonate, gypsum, electric conductivity and silt content, while there was a week positive relation with sand and negative relation with organic matter, water content, bulk density and cataion exchange capacity.
In the current study, remote sensing techniques and geographic information systems were used to detect changes in land use / land cover (LULC) in the city of Al Hillah, central Iraq for the period from 1990 - 2022. Landsat 5 TM and Landsat 8 OLI visualizations, correction and georeferencing of satellite visuals were used. And then make the necessary classifications to show the changes in LULC in the city of Al Hillah. Through the study, the results showed that there is a clear expansion in the urban area from 20.5 km2 in 1990 to about 57 km2 in 2022. On the other hand, the results showed that there is a slight increase in agricultural areas and water. While the arid (empty) area decreased from 168.7 km 2 to 122 km 2 in 2022. Long-term ur
... Show MoreIn this study, from a total of 856 mastitis cases in lactating ewes, only 34 Streptococcus agalactiae isolates showed various types of resistance to three types of antibiotics (Penicillin, Erythromycin and Tetracycline). St. agalactiae isolates were identified according to the standard methods, including a new suggested technique called specific Chromogenic agar. It was found that antibiotic bacterial resistance was clearly identified by using MIC-microplate assay (dilution method). Also, by real-time PCR technique, it was determined that there were three antibiotics genes resistance ( pbp2b, tetO and mefA ). The high percentage of isolate carried of a single gene which was the Tetracycline (20.59%) followed by percentage Penicillin was
... Show MoreKE Sharquie, AA Noaimi, ZN Al-Khafaji…, Journal of Cosmetics, Dermatological Sciences and Applications, 2016 - Cited by 2
KE Sharquie, AA Noaimi, GA Ibrahim, AS Al-Husseiny, Our Dermatology Online, 2016 - Cited by 3
The current study included, studying the ability of eight genera of plants belong to Brassicaceae family, Brassica tournifortii, Cakile Arabica, Capsella bursa – pastoris,Carrichtera annua, Diplotaxis acris, Diplotaxis haru , Eruca sativa and Erucaria hispanica to accumulate ten heavy metals Cadmium, Chromium , Copper, Mercury, Manganese ,Nickel ,Lead ,and Zinc . Plant leaves samples were collected from Al-Tib area during spring of 2021.The data demonstrated that, the highest conc. of Cd was 2.7 mg/kg in Diplotaxis acris leaves and lower value was 0.3 mg/kg in Cakile Arabica leaves. For Co, the highest conc.was 1.3 mg/kg in Capsella bursa – pastoris leaves, whereas the lower value was 0.5 mg/kg in Cakile arabica leaves. As for Cr ele
... Show More