After the outbreak of COVID-19, immediately it converted from epidemic to pandemic. Radiologic images of CT and X-ray have been widely used to detect COVID-19 disease through observing infrahilar opacity in the lungs. Deep learning has gained popularity in diagnosing many health diseases including COVID-19 and its rapid spreading necessitates the adoption of deep learning in identifying COVID-19 cases. In this study, a deep learning model, based on some principles has been proposed for automatic detection of COVID-19 from X-ray images. The SimpNet architecture has been adopted in our study and trained with X-ray images. The model was evaluated on both binary (COVID-19 and No-findings) classification and multi-class (COVID-19, No-findings, and Pneumonia) classification tasks. Our model has achieved an accuracy value of 98.4% for binary and 93.8% for the multi-class classification. The number of parameters of our model is 11 Million parameters which are fewer than some state-of-the-art methods with achieving higher results.
This study aimed to assess orthodontic postgraduate students’ use of social media during the COVID-19 lockdown. Ninety-four postgraduate students (67 master’s students and 27 doctoral students) were enrolled in the study and asked to fill in an online questionnaire by answering questions regarding their use of social media during the COVID-19 lockdown. The frequency distributions and percentages were calculated using SPSS software. The results showed that 99% of the students used social media. The most frequently used type of social media was Facebook, 94%, followed by YouTube, 78%, and Instagram, 65%, while Twitter and Linkedin were used less, and no one used Blogger. About 63% of the students used elements of social media to l
... Show MoreProfit is a goal sought by all banks because it brings them income and guarantees them survival and continuity, and on the other hand, facing commitments without financial crisis. Hence the idea of research in his quest to build scientific tools and means that can help bank management in particular, investors, lenders and others to predict financial failure and to detect early financial failures. The research has produced a number of conclusions, the most important of which is that all Islamic banks sample a safe case of financial failure under the Altman model, while according to the Springate model all Islamic banks sample a search for a financial failure except the Islamic Bank of Noor Iraq for Investment and Finance )BINI(. A
... Show MoreThe current theoretical research targeted to construct a model of terrorist personality and its differentiation from psychopathic personality . Several assumptions or theories of perspectives of psychopathic personality have been compared with the terrorist personality studies that concerned . The suggested theoretical model is interrupting the terrorist personality . The conclusions , discussions are mentioned. Finally, recommendation is suggested .
Since the COVID-19 pandemic began, there have been concerns related to the preparedness of healthcare workers (HCWs). This study aimed to describe the level of awareness and preparedness of hospital HCWs at the time of the first wave.
This multinational, multicenter, cross-sectional survey was conducted among hospital HCWs from February to May 2020. We used a hierarchical logistic regression multivariate analysis to adjust the influence of variables based on awareness and preparedness. We then used association rule mining to identify relationships between HCW confidence in handling suspected
Long memory analysis is one of the most active areas in econometrics and time series where various methods have been introduced to identify and estimate the long memory parameter in partially integrated time series. One of the most common models used to represent time series that have a long memory is the ARFIMA (Auto Regressive Fractional Integration Moving Average Model) which diffs are a fractional number called the fractional parameter. To analyze and determine the ARFIMA model, the fractal parameter must be estimated. There are many methods for fractional parameter estimation. In this research, the estimation methods were divided into indirect methods, where the Hurst parameter is estimated fir
... Show MoreThe use of Bayesian approach has the promise of features indicative of regression analysis model classification tree to take advantage of the above information by, and ensemble trees for explanatory variables are all together and at every stage on the other. In addition to obtaining the subsequent information at each node in the construction of these classification tree. Although bayesian estimates is generally accurate, but it seems that the logistic model is still a good competitor in the field of binary responses through its flexibility and mathematical representation. So is the use of three research methods data processing is carried out, namely: logistic model, and model classification regression tree, and bayesian regression tree mode
... Show MoreThis research attempts to evaluate the role of the information system by highlighting its importance in providing date and information to the tax administration the process of tax accounting for those who are subject to income tax whether they are individuals or companies where the effective information system provides accurate and reliable information in a timely manner.
At the theoretical part of the research, the research approaches the problem of the research represented in that whether the information system, applied in the General Commission for Taxes, is capable of achieving its role in reducing the phenomenon of tax evasion. The existence of a set of things which in the Commission may lead to increase tax evasion by taxpa
... Show MoreThe research aims to identify the extent to which Iraqi private banks practice profit management motivated by reducing the taxable base by increasing the provision for loan losses by relying on the LLP it model, which consists of a main independent variable (net profit before tax) and independent sub-variables (bank size, total debts to total equity, loans granted to total obligations) under the name of the variables governing the banking business. (Colmgrove-Smirnov) was used to test the normal distribution of data for all banks during the period 2017-2020, and then find the correlation between the main independent variable sub and the dependent variable by means of the correlation coefficient person, and then using the multiple
... Show MoreMetasurface polarizers are essential optical components in modern integrated optics and play a vital role in many optical applications including Quantum Key Distribution systems in quantum cryptography. However, inverse design of metasurface polarizers with high efficiency depends on the proper prediction of structural dimensions based on required optical response. Deep learning neural networks can efficiently help in the inverse design process, minimizing both time and simulation resources requirements, while better results can be achieved compared to traditional optimization methods. Hereby, utilizing the COMSOL Multiphysics Surrogate model and deep neural networks to design a metasurface grating structure with high extinction rat
... Show MoreIn this paper new methods were presented based on technique of differences which is the difference- based modified jackknifed generalized ridge regression estimator(DMJGR) and difference-based generalized jackknifed ridge regression estimator(DGJR), in estimating the parameters of linear part of the partially linear model. As for the nonlinear part represented by the nonparametric function, it was estimated using Nadaraya Watson smoother. The partially linear model was compared using these proposed methods with other estimators based on differencing technique through the MSE comparison criterion in simulation study.