After the outbreak of COVID-19, immediately it converted from epidemic to pandemic. Radiologic images of CT and X-ray have been widely used to detect COVID-19 disease through observing infrahilar opacity in the lungs. Deep learning has gained popularity in diagnosing many health diseases including COVID-19 and its rapid spreading necessitates the adoption of deep learning in identifying COVID-19 cases. In this study, a deep learning model, based on some principles has been proposed for automatic detection of COVID-19 from X-ray images. The SimpNet architecture has been adopted in our study and trained with X-ray images. The model was evaluated on both binary (COVID-19 and No-findings) classification and multi-class (COVID-19, No-findings, and Pneumonia) classification tasks. Our model has achieved an accuracy value of 98.4% for binary and 93.8% for the multi-class classification. The number of parameters of our model is 11 Million parameters which are fewer than some state-of-the-art methods with achieving higher results.
Abstract
Objective / Purpose: Online social relationships through the emergence of Web 2.0 applications have become a new trend for researchers to study the behavior of consumers to shop online, as well as social networking sites are technologies that opened up opportunities for new business models. Therefore, a new trend has emerged, called social trade technology. In order to understand the behavioral intentions of the beneficiaries to adopt the technology of social trade, the current research aims at developing an electronic readiness framework and UTAUT model to understand the beneficiary's adoption of social trade technology.
Design/ methodology/ Approach: To achieve the obje
... Show MoreIn recent years, Bitcoin has become the most widely used blockchain platform in business and finance. The goal of this work is to find a viable prediction model that incorporates and perhaps improves on a combination of available models. Among the techniques utilized in this paper are exponential smoothing, ARIMA, artificial neural networks (ANNs) models, and prediction combination models. The study's most obvious discovery is that artificial intelligence models improve the results of compound prediction models. The second key discovery was that a strong combination forecasting model that responds to the multiple fluctuations that occur in the bitcoin time series and Error improvement should be used. Based on the results, the prediction acc
... Show MoreInterval methods for verified integration of initial value problems (IVPs) for ODEs have been used for more than 40 years. For many classes of IVPs, these methods have the ability to compute guaranteed error bounds for the flow of an ODE, where traditional methods provide only approximations to a solution. Overestimation, however, is a potential drawback of verified methods. For some problems, the computed error bounds become overly pessimistic, or integration even breaks down. The dependency problem and the wrapping effect are particular sources of overestimations in interval computations. Berz (see [1]) and his co-workers have developed Taylor model methods, which extend interval arithmetic with symbolic computations. The latter is an ef
... Show MoreThis paper is specifically a detailed review of the Spatial Quantile Autoregressive (SARQR) model that refers to the incorporation of quantile regression models into spatial autoregressive models to facilitate an improved analysis of the characteristics of spatially dependent data. The relevance of SARQR is emphasized in most applications, including but not limited to the fields that might need the study of spatial variation and dependencies. In particular, it looks at literature dated from 1971 and 2024 and shows the extent to which SARQR had already been applied previously in other disciplines such as economics, real estate, environmental science, and epidemiology. Accordingly, evidence indicates SARQR has numerous benefits compar
... Show MoreIncludes search unemployment concept ... types, graduate unemployment a model introduction to the researcher tackled the problem of unemployment being dangerous to the community, it's also growing in size year after year is a waste of a clear human capabilities, also addressed the importance of the research being a touch on the problem of unemployment and its concept and try to find solutions to them , and then came the goals set by the search researcher identifies unemployment and their causes and consequences and to provide a true picture of the situation of unemployed graduates and disclosure about how they treat their graduates for jobs provide him with a decent life problem. And adopted a researcher on the use of a questionnaire add
... Show Moreالخلاصة
اهتم الفكر السياسي في القرنين الاخيرين بدراسة الطبقات على نحو غير مسبوق, واصبح موضوع التحليل الطبقي المعني بالطبقات من حيث تعريفها, وتحديد موقعها في السلم الاجتماعي, فضلاً عن نوعية العلاقة بين شرائحها وفئاتها المختلفة من حيث الصراع والتناغم, المادة الرئيسة والموضوع الاكثر اهمية في دراسات الفكر السياسي والاجتماعي.ومن بين الطبقات, احتلت الطبقة الوسطى مكا
... Show MoreThis paper is specifically a detailed review of the Spatial Quantile Autoregressive (SARQR) model that refers to the incorporation of quantile regression models into spatial autoregressive models to facilitate an improved analysis of the characteristics of spatially dependent data. The relevance of SARQR is emphasized in most applications, including but not limited to the fields that might need the study of spatial variation and dependencies. In particular, it looks at literature dated from 1971 and 2024 and shows the extent to which SARQR had already been applied previously in other disciplines such as economics, real estate, environmental science, and epidemiology. Accordingly, evidence indicates SARQR has numerous benefits compar
... Show MoreA study has been performed to compare the beddings in which ductile iron pipes are buried. In water transmission systems, bends are usually used in the pipes. According to the prescribed layout, at these bends, unbalanced thrust forces are generated that must be confronted to prevent the separation of the bend from the pipe. The bed condition is a critical and important factor in providing the opposite force to the thrust forces in the restraint joint system. Due to the interaction between the native soil and the bedding layers in which the pipe is buried and the different characteristics between them. Also, the interaction with the pipe material makes it difficult to calculate the real forces opposite to the thrust forces and the way they
... Show MoreBackground: The anterior loop of mental nerve is commonly described as that part of the neurovascular bundle that transverses anterior and inferior to the mental foramen only to loop back to exit the mental foramen. The aim of the study is to evaluate the incidence and extension of anterior loop of mental nerve by using digital panoramic imaging system to avoid nerve damage during different surgical procedures in dentistry. Materials and Method: Panoramic image was taken for all 400 patients and stored in the computer. Then Horizontal and Vertical for the anterior loop extension when exist was measured and recorded in a special case sheet prepared for each subject. Results: Results indicated that out of 400 patients there were only 25 pat
... Show More