After the outbreak of COVID-19, immediately it converted from epidemic to pandemic. Radiologic images of CT and X-ray have been widely used to detect COVID-19 disease through observing infrahilar opacity in the lungs. Deep learning has gained popularity in diagnosing many health diseases including COVID-19 and its rapid spreading necessitates the adoption of deep learning in identifying COVID-19 cases. In this study, a deep learning model, based on some principles has been proposed for automatic detection of COVID-19 from X-ray images. The SimpNet architecture has been adopted in our study and trained with X-ray images. The model was evaluated on both binary (COVID-19 and No-findings) classification and multi-class (COVID-19, No-findings, and Pneumonia) classification tasks. Our model has achieved an accuracy value of 98.4% for binary and 93.8% for the multi-class classification. The number of parameters of our model is 11 Million parameters which are fewer than some state-of-the-art methods with achieving higher results.
An optimization calculation is made to find the optimum properties of combined quadrupole lens which consists of electrostatic and magnetic lens. Both chromatic and spherical aberration coefficients are reduced to minimum values and the achromatic aberration is found for many cases. These calculations are achieved with the aid of transfer matrices method and using rectangular model of field distribution, where the path of charged-particles beam traversing the field has been determined by solving the trajectory equation of motion and then the optical properties for lens have been computed with the aid of the beam trajectory along the lens axis. The computations have been concentrated on determining the chromatic and spher
... Show MoreThe purpose of this paper is to find the best multiplier approximation of unbounded functions in –space by using some discrete linear positive operators. Also we will estimate the degree of the best multiplier approximation in term of modulus of continuity and the averaged modulus.
Weibull distribution is considered as one of the most widely distribution applied in real life, Its similar to normal distribution in the way of applications, it's also considered as one of the distributions that can applied in many fields such as industrial engineering to represent replaced and manufacturing time ,weather forecasting, and other scientific uses in reliability studies and survival function in medical and communication engineering fields.
In this paper, The scale parameter has been estimated for weibull distribution using Bayesian method based on Jeffery prior information as a first method , then enhanced by improving Jeffery prior information and then used as a se
... Show MoreA finite element is a study that is capable of predicting crack initiation and simulating crack propagation of human bone. The material model is implemented in MATLAB finite element package, which allows extension to any geometry and any load configuration. The fracture mechanics parameters for transverse and longitudinal crack propagation in human bone are analyzed. A fracture toughness as well as stress and strain contour are generated and thoroughly evaluated. Discussion is given on how this knowledge needs to be extended to allow prediction of whole bone fracture from external loading to aid the design of protective systems.
Abstract
The current research aims to identify the effect of using a model of generative learning in the achievement of first-middle students of chemical concepts in science. The researcher adopted the null hypothesis, which is there is no statistically significant difference at the level (0.05) between the mean scores of the experimental group who study using the generative learning model and the average scores of the control group who study using the traditional method in the chemical concepts achievement test. The research consisted of (200) students of the first intermediate at Al-Farqadin Intermediate School for Boys affiliated with the Directorate of General Education in Baghdad Governorate / Al-Karkh 3 wit
... Show MoreThe university course timetable problem (UCTP) is typically a combinatorial optimization problem. Manually achieving a useful timetable requires many days of effort, and the results are still unsatisfactory. unsatisfactory. Various states of art methods (heuristic, meta-heuristic) are used to satisfactorily solve UCTP. However, these approaches typically represent the instance-specific solutions. The hyper-heuristic framework adequately addresses this complex problem. This research proposed Particle Swarm Optimizer-based Hyper Heuristic (HH PSO) to solve UCTP efficiently. PSO is used as a higher-level method that selects low-level heuristics (LLH) sequence which further generates an optimal solution. The proposed a
... Show MoreAn efficient modification and a novel technique combining the homotopy concept with Adomian decomposition method (ADM) to obtain an accurate analytical solution for Riccati matrix delay differential equation (RMDDE) is introduced in this paper . Both methods are very efficient and effective. The whole integral part of ADM is used instead of the integral part of homotopy technique. The major feature in current technique gives us a large convergence region of iterative approximate solutions .The results acquired by this technique give better approximations for a larger region as well as previously. Finally, the results conducted via suggesting an efficient and easy technique, and may be addressed to other non-linear problems.
A theoretical study to design a conformal microstrip antennas was introduced in this work. Conformal microstrip antennas define antennas which can be conformed to a certain shape or to any curved surface. It is used in high-speed trains, aircraft, defense and navigation systems, landing gear and various communications systems, as well as in body wearable. Conformal antennas have some advantages such as a wider-angle coverage compared to flat antennas and low radar cross-sectional (RCS) and they are suitable for using in Radome. The main disadvantage of these antennas is the narrow bandwidth. The FDTD method is extremely useful in simulating complicated structures because it allows for direct integration of Maxwell's equations depending o
... Show MoreElectrical Discharge Machining (EDM) is a widespread Nontraditional Machining (NTM) processes for manufacturing of a complicated geometry or very hard metals parts that are difficult to machine by traditional machining operations. Electrical discharge machining is a material removal (MR) process characterized by using electrical discharge erosion. This paper discusses the optimal parameters of EDM on high-speed steel (HSS) AISI M2 as a workpiece using copper and brass as an electrode. The input parameters used for experimental work are current (10, 24 and 42 A), pulse on time (100, 150 and 200 µs), and pulse off time (4, 12 and 25 µs) that have effect on the material removal rate (MRR), electrode wear rate (EWR) and wear ratio (WR). A
... Show More