Studied the optical properties of the membranes CdS thin containing different ratios of ions cadmium to sulfur attended models manner spraying chemical gases on the rules of the glass temperature preparation (350c) were calculated energy gap allowed direct these membranes as observed decrease in the value of the energy gap at reducing the proportion ofsulfur ions as absorption coefficient was calculated
Iodine-doped polythiophene thin films are prepared by aerosol assisted plasma jet polymerization at atmospheric pressure and room temperature. The doping of iodine was carried out in situ by employing iodine crystals in thiophene monomer by weight mixing ratios of 1%, 3%, 5% and 7%. The chemical composition analyses of pure and iodine-doped and heat-treated polythiophene thin films are carried out by FTIR spectroscopy studies. The optical band gaps of the films are evaluated from absorption spectrum studies. Direct transition energy gaps are determined from Tauc plots. The structural changes of polythiophene upon doping and the reduction of optical band gap are explained on the basis of the results obtained from FTIR spectroscopy, UV–V
... Show MoreZ-scan has been utilized for studying the non-linear properties and optical limiting behaviors of the dye Copper Phthalocyanine thin films. The refractive index is negative, which indicates a self-defocusing behavior and non-linear absorption coefficient (
This work investigates removing the Malachite Green (MG) dye, the poly acrylic hydrogel beads used as a surface to adsorb the dye, the isotherm of adsorption was examined and aspects that influence it, like increasing heat, adding salt, the influence of dry beads and effect of shaking. according to the results, the effect of the adsorption has been found that it is matched to the Friendlish equation much more than Langmuir and Temkin equations. A positive relationship between the adsorption process and the increase in temperature is found that adsorption increases when the temperature increase. Also, the adsorption increased when the salt was added at a temperature (of 20 C0). As that the adsorption doesn’t budge by adding either
... Show MoreThin films of Zinc Selenide ZnSe have been prepared by using thermal evaporation in vacuum technique (10-5Torr) with thickness (1000, 2700, 4000) A0 and change electrode material and deposited on glass substrates with temperature (373K) and study some electrical properties at this temperature . The graphs shows linear relation between current and voltage and the results have shown increases in the value of current and electrical conductivity with increase thickness and change electrode material from Aluminum to Copper
A thin film of SnSe were deposited by thermal evaporation technique on 400 ±20 nm thick glass substrates of these films were annealed at different temperatures (100,150,200 ⁰C), The effect of annealing on the characteristics of the nano crystalline SnSe thin films was investigated using XRD, UV-VIS absorption spectroscopy, Atomic Force Microscope (AFM), and Hall effect measurements. The results of X-ray displayed that all the thin films have polycrystalline and orthorhombic structure in nature, while UV-VIS study showed that the SnSe has direct band gap of nano crystalline and it is changed from 60.12 to 94.70 nm with increasing annealing temperature. Hall effect measurements showed that all the films have a positive Hall coeffic
... Show MoreThis review article summarizes our research focused on Cu(In, Ga)Se2 (CIGS) nanocrystals, including their synthesis and implementation as the active light absorbing material in photovoltaic devices (PVs). CIGS thin films were prepared by arrested precipitation from molecular precursors consisting of CuCl, InCl3, GaCl3 and Se metal onto Mo/soda-lime glass (SLG) substrates. We have sought to use CIGS nanocrystals synthesized with the desired stoichiometry to deposit PV device layers without high temperature processing. This approach, using spray deposition of the CIGS light absorber layers, without high temperature selenization, has enabled up to 1.5 % power conversion efficiency under AM 1.5 solar illumination. The composition and morphology
... Show More