A new nano-sized NiMo/TiO2-γ-Al2O3 was prepared as a Hydrodesulphurization catalyst for Iraqi gas oil with sulfur content of 8980 ppm, supplied from Al-Dura Refinery. Sol-gel method was used to prepare TiO2- γ-Al2O3 nano catalyst support with 64% TiO2, 32% Al2O3, Ni-Mo/TiO-γ-Al2O3 catalyst was prepared under vacuum impregnation conditions to loading metals with percentage 3.8 wt.% and 14 wt.% for nickel and molybdenum respectively while the percentage for alumina, and titanium became 21.7, and 58.61 respectively. The synthesized TiO2- γ-Al2O3 nanocomposites and Ni-Mo /TiO2- γ-Al2O3 Nano catalyst were then characterized by XRD, AFM, and BET surface area, SEM, XRF, and FTIR. The performance of the synthesized catalyst for removing sulfur compounds was conducted through the pilot HDS laboratory unit, various temperatures range 275oC to 375°C, LHSV 1 h-1 were studied; moreover, the effect of LHSV 1 to 4 h-1 on the percentage of sulfur removal was also studied at the temperature of the best removal with constant pressure 35 bar and H2/HC ratio 200cm3/200cm3. The sulfur content results generally revealed that there was a substantial decrease at all operating conditions used, while the maximum sulfur removal was 87.75% in gas oil on Ni-Mo/TiO2-γ-Al2O3 catalyst at temperature 375˚C and LHSV 1h-1.
In this paper, a self-tuning adaptive neural controller strategy for unknown nonlinear system is presented. The system considered is described by an unknown NARMA-L2 model and a feedforward neural network is used to learn the model with two stages. The first stage is learned off-line with two configuration serial-parallel model & parallel model to ensure that model output is equal to actual output of the system & to find the jacobain of the system. Which appears to be of critical importance parameter as it is used for the feedback controller and the second stage is learned on-line to modify the weights of the model in order to control the variable parameters that will occur to the system. A back propagation neural network is appl
... Show MoreComputer systems and networks are increasingly used for many types of applications; as a result the security threats to computers and networks have also increased significantly. Traditionally, password user authentication is widely used to authenticate legitimate user, but this method has many loopholes such as password sharing, brute force attack, dictionary attack and more. The aim of this paper is to improve the password authentication method using Probabilistic Neural Networks (PNNs) with three types of distance include Euclidean Distance, Manhattan Distance and Euclidean Squared Distance and four features of keystroke dynamics including Dwell Time (DT), Flight Time (FT), mixture of (DT) and (FT), and finally Up-Up Time (UUT). The resul
... Show More
The great scientific progress has led to widespread Information as information accumulates in large databases is important in trying to revise and compile this vast amount of data and, where its purpose to extract hidden information or classified data under their relations with each other in order to take advantage of them for technical purposes.
And work with data mining (DM) is appropriate in this area because of the importance of research in the (K-Means) algorithm for clustering data in fact applied with effect can be observed in variables by changing the sample size (n) and the number of clusters (K)
... Show MoreIn this paper, a robust adaptive sliding mode controller is designed for a mobile platform trajectory tracking. The mobile platform is an example of a nonholonomic mechanical system. The presence of holonomic constraints reduces the number of degree of freedom that represents the system model, while the nonholonomic constraints reduce the differentiable degree of freedom. The mathematical model was derived here for the mobile platform, considering the existence of one holonomic and two nonholonomic constraints imposed on system dynamics. The partial feedback linearization method was used to get the input-output relation, where the output is the error functions between the position of a certain point on the platform
... Show More<span lang="EN-US">This paper presents the comparison between optimized unscented Kalman filter (UKF) and optimized extended Kalman filter (EKF) for sensorless direct field orientation control induction motor (DFOCIM) drive. The high performance of UKF and EKF depends on the accurate selection of state and noise covariance matrices. For this goal, multi objective function genetic algorithm is used to find the optimal values of state and noise covariance matrices. The main objectives of genetic algorithm to be minimized are the mean square errors (MSE) between actual and estimation of speed, current, and flux. Simulation results show the optimal state and noise covariance matrices can improve the estimation of speed, current, t
... Show MoreMalware represents one of the dangerous threats to computer security. Dynamic analysis has difficulties in detecting unknown malware. This paper developed an integrated multi – layer detection approach to provide more accuracy in detecting malware. User interface integrated with Virus Total was designed as a first layer which represented a warning system for malware infection, Malware data base within malware samples as a second layer, Cuckoo as a third layer, Bull guard as a fourth layer and IDA pro as a fifth layer. The results showed that the use of fifth layers was better than the use of a single detector without merging. For example, the efficiency of the proposed approach is 100% compared with 18% and 63% of Virus Total and Bel
... Show MoreThe process of controlling a Flexible Joint Robot Manipulator (FJRM) requires additional sensors for measuring the state variables of flexible joints. Therefore, taking the elasticity into account adds a lot of complexity as all the additional sensors must be taken into account during the control process. This paper proposes a nonlinear observer that controls FJRM, without requiring equipment sensors for measuring the states. The nonlinear state equations are derived in detail for the FJRM where nonlinearity, of order three, is considered. The Takagi–Sugeno Fuzzy Model (T-SFM) technique is applied to linearize the FJRM system. The Luenberger observer is designed to estimate the unmeasured states using error correction. The develop
... Show MoreThis research aims to test the ability of glass waste powder to adsorb cadmium from aqueous solutions. The glass wastes were collected from the Glass Manufacturing Factory in Ramadi. The effect of concentration and reaction time on sorption was tested through a series of laboratory experiments. Four Cd concentrations (20, 40, 60, and 80) as each concentration was tested ten times for 5, 10, 15, 20, 25, 30, 35, 40, 45, and 50 min. Solid (glass wastes) to liquid was 2g to 30ml was fixed in each experiment where the total volume of the solution was 30ml. The pH, total dissolved salts and electrical conductivity were measured at 30ºC. The equilibrium concentration was determined at 25 minutes, thereafter it was noted that the sorption
... Show MoreMany problems were encountered during the drilling operations in Zubair oilfield. Stuckpipe, wellbore instability, breakouts and washouts, which increased the critical limits problems, were observed in many wells in this field, therefore an extra non-productive time added to the total drilling time, which will lead to an extra cost spent. A 1D Mechanical Earth Model (1D MEM) was built to suggest many solutions to such types of problems. An overpressured zone is noticed and an alternative mud weigh window is predicted depending on the results of the 1D MEM. Results of this study are diagnosed and wellbore instability problems are predicted in an efficient way using the 1D MEM. Suitable alternative solutions are presented
... Show MoreMalaria is a curative disease, with therapeutics available for patients, such as drugs that can prevent future malaria infections in countries vulnerable to malaria. Though, there is no effective malaria vaccine until now, although it is an interesting research area in medicine. Local descriptors of blood smear image are exploited in this paper to solve parasitized malaria infection detection problem. Swarm intelligence is used to separate the red blood cells from the background of the blood slide image in adaptive manner. After that, the effective corner points are detected and localized using Harris corner detection method. Two types of local descriptors are generated from the local regions of the effective corners which are Gabor based f
... Show More