Loanwords are the words transferred from one language to another, which become essential part of the borrowing language. The loanwords have come from the source language to the recipient language because of many reasons. Detecting these loanwords is complicated task due to that there are no standard specifications for transferring words between languages and hence low accuracy. This work tries to enhance this accuracy of detecting loanwords between Turkish and Arabic language as a case study. In this paper, the proposed system contributes to find all possible loanwords using any set of characters either alphabetically or randomly arranged. Then, it processes the distortion in the pronunciation, and solves the problem of the missing letters in Turkish language relative to Arabic language. A graph mining technique was introduced, for identifying the Turkish loanwords from Arabic language, which is used for the first time for this purpose. Also, the problem of letters differences, in the two languages, is solved by using a reference language (English) to unify the style of writing. The proposed system was tested using 1256 words that manually annotated. The obtained results showed that the f-measure is 0.99 which is high value for such system. Also, all these contributions lead to decrease time and effort to identify the loanwords in efficient and accurate way. Moreover, researchers do not need to have knowledge in the recipient and the source languages. In addition, this method can be generalized to any two languages using the same steps followed in obtaining Turkish loanwords from Arabic.
In the present research, the chemical washing method has been selected using three chelating agents: citric acid, acetic acid and Ethylene Diamine Tetraacetic Acid (EDTA) to remove 137Cs from two different contaminated soil samples were classified as fine and coarse grained. The factors that affecting removal efficiency such as type of soil, mixing ratio and molarity have been investigated. The results revealed that no correlation relation was found between removal efficiency and the studied factors. The results also showed that conventional chemical washing method was not effective in removing 137Cs and that there are further studies still need to achieve this objective.
The possibility of using zero-valent iron as permeable reactive barrier in removing lead from a contaminated groundwater was investigated. In the batch tests, the effects of many parameters such as contact time between adsorbate and adsorbent (0-240 min), initial pH of the solution (4-8), sorbent dosage (1-12 g/100 mL), initial metal concentration (50-250 mg/L), and agitation speed
(0-250 rpm) were studied. The results proved that the best values of these parameters achieve the maximum removal efficiency of Pb+2 (=97%) were 2 hr, 5, 5 g/100 mL, 50 mg/L and 200 rpm respectively. The sorption data of Pb+2 ions on the zero-valent iron have been performed well by Langmuir isotherm model in compared with Freundlich model under the studied
The degradation and mineralization of 4-chlorophenol (4-CP) by advanced oxidation processes (AOPs) was investigated in this work, using both of UV/H2O2 and photo-Fenton UV/H2O2/Fe+3 systems.The reaction was influenced by the input concentration of H2O2, the amount of the iron catalyst, the type of iron salt, the pH and the concentration of 4-CP. A colored solution of benzoquinon can be observed through the first 5 minutes of irradiation time for UV/H2O2 system when low concentration (0.01mol/L) of H2O2 was used. The colored solution of benzoquinon could also be observed through the first 5 minutes for the UV/H2O2/Fe+3 system at high
concentration (100ppm) of 4-CP. The results have shown that adding Fe+3 to the UV/H2O2 system enhanced
To determine the expression of key epithelial–mesenchymal transition (EMT) markers in gingival tissue samples collected from patients with periodontitis.
Epithelial–mesenchymal transition is a process responsible for shifting epithelial‐phenotype to mesenchymal‐phenotype leading to loss of epithelial‐barrier function. Thus, EMT could be involved as a pathogenic mechanism in periodontitis as both conditions share common promoters and signalling pathways.
Gingival tissue samples were collected fro
This paper was aimed to study the efficiency of forward osmosis (FO) process as a new application for the treatment of wastewater from textile effluent and the factors affecting the performance of forward osmosis process.
The draw solutions used were magnesium chloride (MgCl2), and aluminum sulphate (Al2 ( SO4)3 .18 H2O), and the feed solutions used were reactive red, and disperse blue dyes.
Experimental work were includes operating the forward osmosis process using thin film composite (TFC) membrane as flat sheet for different draw solutions and feed solutions. The operating parameters studied were : draw solutions concentration (10 – 90 g/l), feed solutions concentration (5 – 30 mg/l), draw solutions flow rate (10 – 50 l/hr
The Wheat husk is one of the common wastes abundantly available in the Middle East countries especially in Iraq. The present study aimed to evaluate the Wheat husk as low cost material, eco-friendly adsorbents for the removal of the carcinogenic dye (Congo red dye) from wastewater by investigate the effect of, at different conditions such as, pH(3-10), amount of adsorbents (1-2.3gm/L),and particle size (125-1000) μm, initial Congo red dye concentration(10, 25 , 50 and 75mg/l) by batch experiments. The results showed that the removal percentage of dye increased with increasing adsorbent dosage, and decreasing particle size. The maximum removal and uptake reached (91%) , 21.5mg/g, respectively for 25 initial concent
... Show More

