Geographic Information Systems (GIS) are obtaining a significant role in handling strategic applications in which data are organized as records of multiple layers in a database. Furthermore, GIS provide multi-functions like data collection, analysis, and presentation. Geographic information systems have assured their competence in diverse fields of study via handling various problems for numerous applications. However, handling a large volume of data in the GIS remains an important issue. The biggest obstacle is designing a spatial decision-making framework focused on GIS that manages a broad range of specific data to achieve the right performance. It is very useful to support decision-makers by providing GIS-based decision support systems that significantly reduce the cost involved when moving between two locations. Therefore, in this paper, an advanced decision support system is built for identifying the best route between two locations according to various criteria such as distance, travel time, the safety of the road, and other features. The proposed model includes several stages; Google Maps downloading, preprocessing, integrating with the database, and identifying the best route by utilizing advanced algorithms of artificial intelligence. Furthermore, the Open Street Maps (OSM) database is utilized in this model and implemented using the Quantum Geographic Information Systems (QGIS) platform. One of the main merits of this model is to be faster by removing the influence of non-processed data like null values and unlinked roads on offline google maps levels. The outcomes of this proposed model display the best route which connects the source with the destination, and a table including the entire information for this route.
Amorphization of drug has been considered as an attractive approach in improving drug solubility and bioavailability. Unlike their crystalline counterparts, amorphous materials lack the long-range order of molecular packing and present the highest energy state of a solid material. Co-amorphous systems (CAM) are an innovative formulation technique by where the amorphous drugs are stabilized via powerful intermolecular interactions by means of a low molecular co-former.
This review highlights the different approaches in the preparation of co-amorphous drug delivery system, the proper selection of the co-formers. In addition, the recent advances in characterization, Industrial scale and formulation will be discussed.
Wildfire risk has globally increased during the past few years due to several factors. An efficient and fast response to wildfires is extremely important to reduce the damaging effect on humans and wildlife. This work introduces a methodology for designing an efficient machine learning system to detect wildfires using satellite imagery. A convolutional neural network (CNN) model is optimized to reduce the required computational resources. Due to the limitations of images containing fire and seasonal variations, an image augmentation process is used to develop adequate training samples for the change in the forest’s visual features and the seasonal wind direction at the study area during the fire season. The selected CNN model (Mob
... Show MoreA gracious invitation was extended to us on 9/11/2002 AD, by the University of Tikrit / the Preparatory Committee, for a symposium (Sheikh Daoud Al-Tikriti, and his Scientific Effects), to participate in it.
The symposium was scheduled to be held on the 25th and 26th of March 2003 AD, but God Almighty decreed that our country be occupied, so the Preparatory Committee set another date for the symposium on 10/21/2003 AD.
It was not possible for the symposium to be held until 25-26/4/2004 AD, and many researchers attended, who were assigned to investigate some manuscripts of Sheikh Dawood (may God have mercy on him) or to write about his personal and scientific biography.
And God (Glory be to Him) did not enable us to attend, becau
Healthcare professionals routinely use audio signals, generated by the human body, to help diagnose disease or assess its progression. With new technologies, it is now possible to collect human-generated sounds, such as coughing. Audio-based machine learning technologies can be adopted for automatic analysis of collected data. Valuable and rich information can be obtained from the cough signal and extracting effective characteristics from a finite duration time interval that changes as a function of time. This article presents a proposed approach to the detection and diagnosis of COVID-19 through the processing of cough collected from patients suffering from the most common symptoms of this pandemic. The proposed method is based on adopt
... Show MoreThe physical substance at high energy level with specific circumstances; tend to behave harsh and complicated, meanwhile, sustaining equilibrium or non-equilibrium thermodynamic of the system. Measurement of the temperature by ordinary techniques in these cases is not applicable at all. Likewise, there is a need to apply mathematical models in numerous critical applications to measure the temperature accurately at an atomic level of the matter. Those mathematical models follow statistical rules with different distribution approaches of quantities energy of the system. However, these approaches have functional effects at microscopic and macroscopic levels of that system. Therefore, this research study represents an innovative of a wi
... Show MoreThe development of Web 2.0 has improved people's ability to share their opinions. These opinions serve as an important piece of knowledge for other reviewers. To figure out what the opinions is all about, an automatic system of analysis is needed. Aspect-based sentiment analysis is the most important research topic conducted to extract reviewers-opinions about certain attribute, for instance opinion-target (aspect). In aspect-based tasks, the identification of the implicit aspect such as aspects implicitly implied in a review, is the most challenging task to accomplish. However, this paper strives to identify the implicit aspects based on hierarchical algorithm incorporated with common-sense knowledge by means of dimensionality reduction.
Copula modeling is widely used in modern statistics. The boundary bias problem is one of the problems faced when estimating by nonparametric methods, as kernel estimators are the most common in nonparametric estimation. In this paper, the copula density function was estimated using the probit transformation nonparametric method in order to get rid of the boundary bias problem that the kernel estimators suffer from. Using simulation for three nonparametric methods to estimate the copula density function and we proposed a new method that is better than the rest of the methods by five types of copulas with different sample sizes and different levels of correlation between the copula variables and the different parameters for the function. The
... Show More