Preferred Language
Articles
/
bsj-5965
Diagnosing COVID-19 Infection in Chest X-Ray Images Using Neural Network

With its rapid spread, the coronavirus infection shocked the world and had a huge effect on billions of peoples' lives. The problem is to find a safe method to diagnose the infections with fewer casualties. It has been shown that X-Ray images are an important method for the identification, quantification, and monitoring of diseases. Deep learning algorithms can be utilized to help analyze potentially huge numbers of X-Ray examinations. This research conducted a retrospective multi-test analysis system to detect suspicious COVID-19 performance, and use of chest X-Ray features to assess the progress of the illness in each patient, resulting in a "corona score." where the results were satisfactory compared to the benchmarked techniques.  This research results showed that rapidly evolved Artificial Intelligence (AI) -based image analysis can accomplish high accuracy in detecting coronavirus infection as well as quantification and illness burden monitoring.

Scopus Clarivate Crossref
View Publication Preview PDF
Quick Preview PDF
Publication Date
Sat Apr 01 2023
Journal Name
Baghdad Science Journal
COVID-19 Diagnosis Using Spectral and Statistical Analysis of Cough Recordings Based on the Combination of SVD and DWT

Healthcare professionals routinely use audio signals, generated by the human body, to help diagnose disease or assess its progression. With new technologies, it is now possible to collect human-generated sounds, such as coughing. Audio-based machine learning technologies can be adopted for automatic analysis of collected data. Valuable and rich information can be obtained from the cough signal and extracting effective characteristics from a finite duration time interval that changes as a function of time. This article presents a proposed approach to the detection and diagnosis of COVID-19 through the processing of cough collected from patients suffering from the most common symptoms of this pandemic. The proposed method is based on adopt

... Show More
Scopus (1)
Scopus Crossref
View Publication Preview PDF
Publication Date
Tue Jun 23 2020
Journal Name
Baghdad Science Journal
Anomaly Detection Approach Based on Deep Neural Network and Dropout

   Regarding to the computer system security, the intrusion detection systems are fundamental components for discriminating attacks at the early stage. They monitor and analyze network traffics, looking for abnormal behaviors or attack signatures to detect intrusions in early time. However, many challenges arise while developing flexible and efficient network intrusion detection system (NIDS) for unforeseen attacks with high detection rate. In this paper, deep neural network (DNN) approach was proposed for anomaly detection NIDS. Dropout is the regularized technique used with DNN model to reduce the overfitting. The experimental results applied on NSL_KDD dataset. SoftMax output layer has been used with cross entropy loss funct

... Show More
Scopus (20)
Crossref (9)
Scopus Clarivate Crossref
View Publication Preview PDF
Publication Date
Thu Jul 01 2021
Journal Name
Iraqi Journal Of Science
Implementation of Machine Learning Techniques for the Classification of Lung X-Ray Images Used to Detect COVID-19 in Humans

COVID-19 (Coronavirus disease-2019), commonly called Coronavirus or CoV, is a dangerous disease caused by the SARS-CoV-2 virus. It is one of the most widespread zoonotic diseases around the world, which started from one of the wet markets in Wuhan city. Its symptoms are similar to those of the common flu, including cough, fever, muscle pain, shortness of breath, and fatigue. This article suggests implementing machine learning techniques (Random Forest, Logistic Regression, Naïve Bayes, Support Vector Machine) by Python to classify a series of chest X-ray images that include viral pneumonia, COVID-19, and healthy (Not infected) cases in humans. The study includes more than 1400 images that are collected from the Kaggle platform. The expe

... Show More
Scopus (32)
Crossref (17)
Scopus Crossref
View Publication Preview PDF
Publication Date
Mon Jan 01 2024
Journal Name
Baghdad Science Journal
Artificial Neural Network and Latent Semantic Analysis for Adverse Drug Reaction Detection

Adverse drug reactions (ADR) are important information for verifying the view of the patient on a particular drug. Regular user comments and reviews have been considered during the data collection process to extract ADR mentions, when the user reported a side effect after taking a specific medication. In the literature, most researchers focused on machine learning techniques to detect ADR. These methods train the classification model using annotated medical review data. Yet, there are still many challenging issues that face ADR extraction, especially the accuracy of detection. The main aim of this study is to propose LSA with ANN classifiers for ADR detection. The findings show the effectiveness of utilizing LSA with ANN in extracting AD

... Show More
Scopus (4)
Crossref (8)
Scopus Crossref
View Publication Preview PDF
Publication Date
Sun Apr 30 2023
Journal Name
Iraqi Journal Of Science
Detection of COVID-19 in X-Rays by Convolutional Neural Networks

      Coronavirus is considered the first virus to sweep the world in the twenty-first century, it appeared by the end of 2019. It started in the Chinese city of Wuhan and began to spread in different regions around the world too quickly and uncontrollable due to the lack of medical examinations and their inefficiency. So, the process of detecting the disease needs an accurate and quickly detection techniques and tools. The X-Ray images are good and quick in diagnosing the disease, but an automatic and accurate diagnosis is needed. Therefore, this paper presents an automated methodology based on deep learning in diagnosing COVID-19. In this paper, the proposed system is using a convolutional neural network, which is considered one o

... Show More
Scopus (8)
Crossref (7)
Scopus Crossref
View Publication Preview PDF
Publication Date
Sat Oct 01 2022
Journal Name
Baghdad Science Journal
Offline Signature Biometric Verification with Length Normalization using Convolution Neural Network

Offline handwritten signature is a type of behavioral biometric-based on an image. Its problem is the accuracy of the verification because once an individual signs, he/she seldom signs the same signature. This is referred to as intra-user variability. This research aims to improve the recognition accuracy of the offline signature. The proposed method is presented by using both signature length normalization and histogram orientation gradient (HOG) for the reason of accuracy improving. In terms of verification, a deep-learning technique using a convolution neural network (CNN) is exploited for building the reference model for a future prediction. Experiments are conducted by utilizing 4,000 genuine as well as 2,000 skilled forged signatu

... Show More
Scopus (2)
Crossref (1)
Scopus Clarivate Crossref
View Publication Preview PDF
Publication Date
Wed Jun 01 2022
Journal Name
Journal Of The College Of Languages (jcl)
COVID-19 Translated Messages: Arabic Speakers’ Acceptability of Lexical Choices

Worldwide, there is an increased reliance on COVID-19-related health messages to curb the COVID-19 outbreak. Therefore, it is vital to provide a well-prepared and authentic translation of English-language messages to reach culturally and linguistically diverse audiences. However, few studies, if any, focus on how non-English-speaking readers receive and linguistically accept the lexical choices in the messages translated into their language. The present study tested a sample of translated Arabic COVID-19-related texts that were obtained from the World Health Organization and Australian New South Wales Health websites. This study investigated to that extent Arabic readers would receive translated COVID-19 health messages and whether the t

... Show More
View Publication Preview PDF
Publication Date
Tue Dec 05 2023
Journal Name
Baghdad Science Journal
An Observation and Analysis the role of Convolutional Neural Network towards Lung Cancer Prediction

Lung cancer is one of the most serious and prevalent diseases, causing many deaths each year. Though CT scan images are mostly used in the diagnosis of cancer, the assessment of scans is an error-prone and time-consuming task. Machine learning and AI-based models can identify and classify types of lung cancer quite accurately, which helps in the early-stage detection of lung cancer that can increase the survival rate. In this paper, Convolutional Neural Network is used to classify Adenocarcinoma, squamous cell carcinoma and normal case CT scan images from the Chest CT Scan Images Dataset using different combinations of hidden layers and parameters in CNN models. The proposed model was trained on 1000 CT Scan Images of cancerous and non-c

... Show More
Scopus (1)
Crossref (1)
Scopus Crossref
View Publication Preview PDF
Publication Date
Sat Jul 01 2023
Journal Name
Journal Of Accounting And Financial Studies ( Jafs )
The Role of Participatory Budgeting in Improving Performance in light of Covid 19

The current research aims to analyze the role of participatory budgeting in improving performance, especially during crises such as the Covid-19 crisis. The research used the descriptive analytical method to reach the results by distributing 100 questionnaires to a number of employees in Iraqi joint stock companies and at multiple administrative levels. The research came to several important conclusions, the most important of which is that the bottom-up approach to budgeting produces more achievable budgets than the top-down approach, which is imposed on the company by senior management with much less employee participation. Additionally, there is a better information flow from the lower levels of the organization to the upper management

... Show More
View Publication Preview PDF
Publication Date
Sun Jan 02 2022
Journal Name
Journal Of The College Of Languages (jcl)
A Pragmatic Analysis of Illocutionary Act in a Selected Presidential Speech on COVID-19

     This paper aims at studying the illocutionary speech acts: direct and indirect to show the most dominant ones in a presidential speech delivered by the USA president. The speech is about the most critical health issue in the world, COVID-19 outbreak.  A descriptive qualitative study was conducted by observing the first speech delivered by president Trump concerning coronavirus outbreak and surveying the illocutionary acts: directive, declarative, commissive, expressive, and representative. Searle's (1985) classification of illocutionary speech acts is adopted in the analysis.

     What are the main types of the illocutionary speech acts performed by Trump in his speech?; Why does

... Show More
Crossref
View Publication Preview PDF