With its rapid spread, the coronavirus infection shocked the world and had a huge effect on billions of peoples' lives. The problem is to find a safe method to diagnose the infections with fewer casualties. It has been shown that X-Ray images are an important method for the identification, quantification, and monitoring of diseases. Deep learning algorithms can be utilized to help analyze potentially huge numbers of X-Ray examinations. This research conducted a retrospective multi-test analysis system to detect suspicious COVID-19 performance, and use of chest X-Ray features to assess the progress of the illness in each patient, resulting in a "corona score." where the results were satisfactory compared to the benchmarked techniques. This research results showed that rapidly evolved Artificial Intelligence (AI) -based image analysis can accomplish high accuracy in detecting coronavirus infection as well as quantification and illness burden monitoring.
Because the Coronavirus epidemic spread in Iraq, the COVID-19 epidemic of people quarantined due to infection is our application in this work. The numerical simulation methods used in this research are more suitable than other analytical and numerical methods because they solve random systems. Since the Covid-19 epidemic system has random variables coefficients, these methods are used. Suitable numerical simulation methods have been applied to solve the COVID-19 epidemic model in Iraq. The analytical results of the Variation iteration method (VIM) are executed to compare the results. One numerical method which is the Finite difference method (FD) has been used to solve the Coronavirus model and for comparison purposes. The numerical simulat
... Show MoreBackground: The COVID-19 infection is a more recent pandemic disease all over the world and studying the pulmonary findings on survivors of this disease has lately commenced.
Objective: We aimed to estimate the cumulative percentage of whole radiological resolution after 3 months from recovery and to define the residual chest CT findings and exploring the relevant affecting factors.
Subjects and Methods: Patients who had been previously diagnosed with COVID-19 pneumonia confirmed by RT-PCR test and had radiological evidence of pulmonary involvement by Chest CT during the acute illness were included in the present study. The radiol
... Show MoreIn this research, the results of the Integral breadth method were used to analyze the X-ray lines to determine the crystallite size and lattice strain of the zirconium oxide nanoparticles and the value of the crystal size was equal to (8.2nm) and the lattice strain (0.001955), and then the results were compared with three other methods, which are the Scherer and Scherer dynamical diffraction theory and two formulas of the Scherer and Wilson method.the results were as followsScherer crystallite size(7.4nm)and lattice strain(0.011968),Schererdynamic method crystallite size(7.5 nm),Scherrer and Wilson methodcrystallite size( 8.5nm) and lattice strain( 0.001919).And using another formula for Schearer and Wilson methodwe obtain the size of the c
... Show MoreGod Almighty put in his great book secrets that do not end, and wonders that do not expire, for he is the one from which the scholars are not satisfied, and he does not create due to the multitude of response, and it is the comprehensive and inhibitory book that God conceals to the worlds, and he challenged the two heavyweights to come up with something like it.
At all times, issues arise in the Noble Qur’an that fit the needs of the people of that time and their culture, for it is an eternal book, characterized by the ability to give, extend and respond to addressing the problems of the age and its variables, when the Arabs had little luck at the time of the message’s descent from the scientific culture, and their proficienc
... Show MoreThe successful implementation of deep learning nets opens up possibilities for various applications in viticulture, including disease detection, plant health monitoring, and grapevine variety identification. With the progressive advancements in the domain of deep learning, further advancements and refinements in the models and datasets can be expected, potentially leading to even more accurate and efficient classification systems for grapevine leaves and beyond. Overall, this research provides valuable insights into the potential of deep learning for agricultural applications and paves the way for future studies in this domain. This work employs a convolutional neural network (CNN)-based architecture to perform grapevine leaf image classifi
... Show MoreRadiation is a form of energy, its emitted either in the form of particles such as α-particles and β-particles (beta particles including the electron and the positron) or waves such as sunlight, X-rays and γ-rays. Radiation found everywhere around us and it comes from many different sources naturally or man-made sources. In this study a questionnaire was distributed to people working in the field of X-rays that used for a medical imaging (X-ray and CT-scan) to evaluate the extent of awareness and knowledge in estimate the damage of ionizing radiation as a result of wrong use. The questionnaire was distributed to medical clinics in Al-Harithiya in Baghdad, which it’s considered as
At the end of 2019, a new form of Coronavirus (later dubbed COVID-19) emerged in China and quickly spread to other regions of the globe. Despite the virus’s unique and unknown characteristics, it is a widely distributed infectious illness. Finding the geographical distribution of the virus transmission is therefore critical for epidemiologists and governments in order to respond to the illness epidemic rapidly and effectively. Understanding the dynamics of COVID-19’s spatial distribution can help to understand the pandemic’s scope and effects, as well as decision-making, planning, and community action aimed at preventing transmission. The main focus of this study is to investigate the geographic patterns of COVID-19 disseminat
... Show MoreThe present study develops an artificial neural network (ANN) to model an analysis and a simulation of the correlation between the average corrosion rate carbon steel and the effective parameter Reynolds number (Re), water concentration (Wc) % temperature (T o) with constant of PH 7 . The water, produced fom oil in Kirkuk oil field in Iraq from well no. k184-Depth2200ft., has been used as a corrosive media and specimen area (400 mm2) for the materials that were used as low carbon steel pipe. The pipes are supplied by Doura Refinery . The used flow system is all made of Q.V.F glass, and the circulation of the two –phase (liquid – liquid ) is affected using a Q.V.F pump .The input parameters of the model consists of Reynolds number , w
... Show MoreArtificial Neural Network (ANN) model's application is widely increased for wastewater treatment plant (WWTP) variables prediction and forecasting which can enable the operators to take appropriate action and maintaining the norms. It is much easier modeling tool for dealing with complex nature WWTP modeling comparing with other traditional mathematical models. ANN technique significance has been considered at present study for the prediction of sequencing batch reactor (SBR) performance based on effluent's (BOD5/COD) ratio after collecting the required historical daily SBR data for two years operation (2015-2016) from Baghdad Mayoralty and Al-Rustamiya WWTP office, Iraq. The prediction was gotten by the application of a feed-forwa
... Show More